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INTRODUCTION 

The formation of Tallinn Research Group (TRG) dates back to 1969, 

when, as a result of acquaintance with the Russian translation of the R. 

Bellman collection [1], we got acquainted with the excellent works of 

E.F. Moore and S. Ulam contained in it, as well as with the J. Myhill`s 
work [2], which were played a great role in the emergence of our interest 

in the problems of cellular automata (CAs). In the CAs theory, J. Myhill 

is known for proving (along with E. Moore) the Garden of Eden theorem, 
stating that a cellular automaton has a configuration with no predecessor 

if and only if it has two different asymptotic configurations which evolve 

to the same configuration. In the period 1969–1972, within the Academy 
of Sciences of the Estonian SSR, our research interest was focused on the 

CAs problems exclusively in both theoretical and applied aspects. It was 

during this period that our research on CA problems was most active and 

was our main focus. Their results are reflected in the monograph [3], that 
is the first monographic work in the USSR in this direction and was noted 

as one of the best works of the Academy of Sciences of the ESSR in 1972 

with the award of a monetary prize; in 1977 the book was noted in Soviet 
Mathematical Encyclopedia and in Encyclopaedia of physical science and 

technology [180,181]. We introduced Russian–language terminology of 

the main concepts of the CAs theory, the main definitions and concepts, 
however, CAs itself were defined as “homogeneous structures”. These 

moments became generally accepted in the USSR, and then in republics 

of the former USSR. 

Subsequently, a special structural unit was formed within the framework 

of TRG with a focus on noosphere issues. Or more precisely, the Baltic 

Branch of International Academy of Noosphere is formed on the basis of 
the Tallinn Research Group and is managed by Prof. Victor Aladjev. The 

Baltic Branch is non–profit scientific organization registered by law of 

Republic of Estonia. The following fundamental directions of scientific 
activity were determined for the Baltic Branch: 

– mathematical theory of homogeneous structures (cellular automata – 
CA or CAs depending on context) and its applied aspects; 

– computer science and modern information technologies; 

– biomedical researches in the context of the noosphere problematics; 
– physical and technical researches in the context of the noosphere 

problematics; 

– infodynamical models of systems in the context of the noosphere 
problematics (models of systems in infosociety); 

– preparation and publication of books and periodicals in these areas; 

– University courses and seminars on the above problematics; 
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– computer mathematics systems and creation of software tools fot them. 

From the very outset of our researches on the CAs problems, first of all, 

with application accent onto mathematical developmental biology the 

informal TRG consisting of the researchers of a few leading scientific 
centres of the former USSR has gradually formed. At that, the TRG staffs 

was not strictly permanent and was being changed in rather broad bounds 

depending on the researched problems. Members of the TRG participated 
in work of a lot of scientific conferences and other forums in Germany, 

Japan, the USA, Great Britain, Holland, Hungary, and other countries. 

The main scientific results of TRG were published in a lot of periodicals, 
transactions and proceedings in the USA, Germany, Great Britain, USSR, 

Holland, Hungary, Czechoslovakia, Japan, Estonia, Russia, Lithuania, 

Ukraine, Belarus, Moldova and other countries. The long TRG activities 

in the Homogeneous Structures issues received international recognition. 
At present, the TRG is as collective member of the Baltic Branch of the 

International Academy of Noosphere and the IFIP Working Group in 

parallel processing and computing by Cellular Automata models. 

Meanwhile, after above–mentioned period of research on CAs problems 

in the future, trends in TRG interests changed quite often and lay within 
quite wide limits: CAs theory, computer science, programming, computer 

mathematics systems, statistics, automated control systems and others. 

Moreover, during significant intervals our researches in the CAs theory 
were not conducted or were carried out nominally because of the more 

high priority at that time of other topics. 

Our scientific reports [4,5] at the substantial level have represented the 

reviews of the basic results received by the TRG on the CA problems and 

other scientific and practical activity. Ibidem, the analysis of the TRG 
activity instructive to a certain degree for research of the dynamics of the 

development of the CAs problems as an independent scientific direction 

as a whole had been represented. The references list in this book contain 

quite a few links, whereas a rather complete list of them can be found on 
the following web–links, namely: 

http://www.hs-ca.narod.ru  or  https://ca-hs.weebly.com 

https://files.portalus.ru/dl/files/TRG.html 

https://bbian.webs.com/publications.htm 

https://files.portalus.ru/dl/files/Our_publications_2019.pdf 

TRG, originally created under the subject of Homogeneous Structures 

(Cellular Automata), throughout its creative activity both theoretically 

and practically worked on a very wide range of issues, including applied 
technological issues. At the same time, the main orientation quite often 

and, sometimes, during a fairly long time changed to such directions as 

http://www.hs-ca.narod.ru/
https://ca-hs.weebly.com/
https://files.portalus.ru/dl/files/TRG.html
https://bbian.webs.com/publications.htm
https://files.portalus.ru/dl/files/Our_publications_2019.pdf
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programming, computer mathematics systems, computer science, books 

publishing, automated control systems, statistics and many others. 

Our researches presented below (along with activity within the thematic 

focus of one or the other organization) were carried out during stay in 
such organizations as the Republican Computing Center of the CSO of 

the ESSR, the Academy of Sciences of the ESSR, the All–Union State 

Project–Technological Institute of the CSO of the USSR (the Estonian 
branch), Estonian branch of the Central Project–Technology Institute of 

the All–Union Association Soyuztorgsystem, Computing Center of the 

Estonian Republican Office of the State Bank of the USSR, Production 
Association Silikaat Ltd., Project–Technology Institute of Industry of the 

Ministry of Construction of the ESSR, VASCO Ltd., FIDO Ltd., Sinfex 

AS, Salcombe Eesti AS, The International Academy of Noosphere (the 

Estonian branch). Being in these organizations, along with the scientific 
research described below, we were engaged in purely applied activities: 

the training of system and application programmers, the development of 

industry and republican automated control systems, the introduction of 
promising computing tools and their software, development of different 

application software systems. A number of our activities in this direction 

have been awarded at the departmental, republican and all–Union levels. 

Already in the International Academy of Noosphere (the Baltic Branch) 

headed by academician Prof. V.Z. Aladjev international collective of the 
scientists and researchers for the period 1995 – 2022 have preformed and 

have issued, along with a lot of the journal publications, number of text–

books, books and monographs on the modern computer technologies, the 
probability theory, mathematical and general statistics, mathematical 

theory of the Homogeneous Structures (Cellular Automata), bio–medical 

researches, and also total reports of scientific and practical activity of the 
Academy for the accountable period. Main our publications for the above 

period are shown in the above WWW sites. Our publications were done 

in the following countries: USSR, Russia, Japan, Estonia, USA, Ukraine, 

Belarus, Germany, GDR, the Netherlands, Lithuania, Hungary, United 
Kingdom, Czechoslovakia and some others. This book briefly describes 

our most active researches and practical developments. I hope, the results 

presented below will help to clear up both theoretical and applied aspects 
of the TRG activity, and inform about achievements in the above areas of 

the modern science and engineering. Of the presented material, a certain 

comparative aspect can be rather clearly traced regarding development of 
the same directions in the West, primarily in such fields as mainframes, 

personal computers, computer mathematics systems and some others. In 

our opinion, the history of the past often allows to better understand the 

present and predict the future. 
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CHAPTER 1: Mainframes and Personal Computers 

The chapter presents our developments in the field of programming of 

various kinds of applied projects both for mainframes and for personal 

computers. At the same time, it should be borne in mind that work in this 

field was often interspersed with our study on cellular automata theory 
(homogeneous structures), focusing on one or another aspect, depending 

on the emerging at that time circumstances. 

1.1. System and applied programming on mainframes 

In the mid–1960s, a number of rather significant problems in the field of 

computer technology emerged in the USSR. Because of this, there is a 

need for a quick transition to the mass production of unified computers 
equipped with a large number of standardized software and peripheral 

equipment. To solve this problem, it was decided to develop an UCS 

(Unified Computers System) – a Soviet series of computers, analogues of 
the System/360 and System/370 series from IBM, produced in the USA 

since 1964. UCS software and hardware (only at the interface level of the 

external devices) were compatible with their American prototypes. In the 
USSR, UCS has been actively exploited since 1971. Meanwhile, in the 

ESSR (Estonia), the appearance of the first UCS required mass training 

of specialists (programmers and engineers) for its operation. Moreover, 

there was an acute shortage of quality literature for the users. Therefore, 
along with mastering the UCS, in a number of organizations in Tallinn 

we organized appropriate courses for the users, prepared and published 

appropriate manuals, which received positive responses in the USSR as a 
whole [6,7]. This approach made it possible, within a fairly reasonable 

time to introduce UCS in a number of leading organizations of the ESSR, 

in particular, the Central Statistical Office of the ESSR. 

Given the prospects for the development of UCS models, we decided to 

focus on the operating system of the OS (analog of OS/360), instead of 
the DOS disk operating system (analog of DOS/360), that was delivered 

with junior UCS models with limited hardware resources. Therefore, in 

order to ensure the possibility of using UCS with OS to program the 

problems of automated control systems (ACS), in particular, ACS of trade 
by us in 1976, the MINIOS operating system was created – an optimized 

version of OS IBM/360 for junior UCS models [8]. MINIOS was at one 

time quite widespread in Estonia, Russia and Ukraine in the development 
of ACS for various purposes in various institutes and enterprises. 

The Database Management System (DBMS) is a certain set of software 
and language tools that allow to create databases (DB) and manage data. 
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DBMS play an important enough role in information processing software 

systems, in particular in various types of ACS. As a DBMS, the DBMS 
OKA (an analogue of the IMS DBMS of IBM) was determined during the 

development of the Collective Use Computing Center (CUCC) of the 

CSO of the ESSR. Meanwhile, created as a new technology for the IBM 
System/360 platform, the system for its effective functioning required 

more powerful UCS models than available at that time in ESSR. In this 

regard, the DBMS was created on the basis of the MINIOS operating 

system and the OKA DBMS (optimized version of the IMS DBMS), that 
have been developed by the author during his stay in the Estonian branch 

of VGPTI CSO USSR [9]. The created systems allowed them to be used 

on UCS with minimal hardware resources, allowing you to significantly 
expand the applicability of these systems at that time and allowed you to 

significantly speed up the programming and debugging of software for 

the CUCC users and ACS tasks. In order to expand the programming 
capabilities on computers of the second and even third generation, we 

have proposed the method of so–called "disk transits" which allowed us 

to program a number of problems more efficiently [10,113]. 

In the CSO system of the USSR, in the tenth five–year plan, the first 

stages were to service information and computational work not only of 
statistical bodies, but also of enterprises and organizations of various 

departmental of four CUCCs were created in Minsk, Tallinn, Tula and 

Tomsk, the tasks of which provide modes of time sharing, teleprocessing 

and dialogue with computers, ensuring the functioning of territorial ACS. 
It was at all the main stages of the 1st stage of CUCC creation in Tallinn 

that the TRG took a rather active part, which was repeatedly noted in the 

systems of both the CSO of the ESSR and the CSO of the USSR. Note, 
members of our group took a rather active part both in the creation of the 

CUCC itself, and in setting and programming the tasks of the ACS of a 

number of enterprises-users of the CUCC, in particular, the ACS Trade of 

the ESSR. TRG also took a certain part in the design of the republican 
ACS of the ESSR along with automated system of state statistics. 

As part of the design and creation of the CUCC of CSO of the ESSR and 

a number of other CUCC in the USSR, we carried out both theoretical 

and practical developments on parallel information processing systems 

on computer networks. In particular, the collections [10,11] contain our 
works on parallel information processing systems, parallel algorithms, 

their modeling in homogeneous structures, which are the theoretical basis 

of parallel computing. In particular, one of the purely applied tasks of 
paralleling was the introduction of parallel processing technology for 

accounting tasks [8] as well as some other tasks of users of the CUCC of 

CSO of the ESSR, components of automated control systems. 
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Some perspectives of further development of the homogeneous structures 

theory as a formal apparatus of investigation of parallel computational 
technique are considered. In addition, a formal description of a parallel 

processing system for UCS (analogous IBM/360) in terms of system of 

algorithmic algebras was given [12]. Our approach to creation of HPC on 
basis of hardware of CUCC also presented a certain interest. A working 

layout of parallel Assembly language information processing system for 

series UCS/IBM 360/370 was created [13], however the difficult enough 

situation before the collapse of the USSR did not allow this work to be 
completed. It should be noted that when creating the system, parallel 

algorithms were used, which were borrowed from some applied control 

algorithms used in some high–parallel models implemented in control 
models in homogeneous structures (cellular automata). Along with these 

directions, we took a very active part in all stages of creation of CUCC 

of the CSO of the ESSR and its users at both theoretical and the applied 
level, some aspects of which are reflected in [14-22,113]. 

The development of the above system software and active participation 
in creation of CUCC of the CSO of the ESSR repeatedly awarded by the 

USSR Ministry of Trade, the USSR CSO and the Council of Ministers of 

the USSR during 1976–1982, including cash rewards for the successful 
completion of work on the establishment and commissioning of the first 

stages of the CUCC in the USSR. 

1.2. System and applied programming on personal computers 

To solve the problem of automation of chemical and biological research, 

in 1974 the Institute of Electrochemistry of the Academy of Sciences of 

the USSR and VNIKI systems with numerical software control by the 

Leningrad Electro–mechanical Plant began work on the creation of a 
programmable keyboard desktop computer for automating the workplace 

of an experimental researcher, supported by the comprehensive target 

programs of the State Committee for Science and Technology, the USSR 
State Planning Commission and the USSR Academy of Sciences. It is 

important to note that these programs included not only the development 

of technical tools for the automation of scientific research, but also the 
creation of standard automated workplaces based on them. The programs 

taken formed the basis for creation of the first Soviet personal computers. 

At the very beginning 80s, the first serious domestic personal computers 

(PC) appeared in the USSR, and in the mid–80s we began work of system 

and applied nature for one of the first Soviet PC ISKRA–226 (analogue 
of the Wang 2200) which were one of the most massive ones at that time. 

PC ISKRA–226 was focused on conducting online operational planning 
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calculations, working with local databases as part of information and 

search engines, solving scientific and technical, engineering, statistical 
and optimization tasks in online mode. PCs can be effectively used in 

computer networks as an intelligent terminal or elementary computer at 

the lowest level of network processing, and also in the various automated 
workplaces (AWS), in particular, workplace of statistician. 

Despite the positive experience in the USSR in preparing documentation 
for software support of computers, technical documentation for ISKRA–

226 left much to be desired. That is why we first of all in [23-26] tried to 

lay the bridge that would connect the desires and skills of the user with 
the capabilities of the PC ISKRA–226. At that time, these materials were 

in great demand in the USSR, quite understandable representing both the 

hardware and the software of ISKRA–226. Note that these materials were 

also related to modifications of ISKRA–226 and software and hardware 
complexes based on it. In particular, [23-26] describes the technical and 

software tools of the ISKRA–226 PC, describes the operators of the Basic 

language and the features of their implementation. Application programs 
used in the operating environment of Basic are given, including also our 

A–BASIC program, which allows to expand its expressive facilities quite 

significantly. These books were intended for wide range of readers and 
specialists desires to use the facilities of software–controlled computers 

in their pfofessional activities. Some books were thereafter republished. 

In order to enhance the capabilities of expressive means of the language 

Basic of PC ISKRA–226, a rather simple approach was proposed using 

only exclusively the Basic language itself, whose essence is to provide 

the user with 17 new, additional operators of the Basic language. In order 
to be able to work with additional operators in the Basic environment, a 

special program “INTERPRETER” has been developed, which allows 

any source program in the language Basic of ISKRA–226 and containing 
additional operators, to be translated into an equivalent program in the 

language Basic of ISKRA–226. The interpreter algorithm with the source 

code is presented in [24], allowing to rather easily expand the interpreter 
on new operators of the language Basic of PC ISKRA–226. 

A number of application software were created of which the “Metrolog” 
package to provide a metrological service for enterprises [24] of dynamic 

organization, using a data management system with fast access in the 

mode of direct addressing of sectors of a flexible disk. In particular, the 
package provides the measuring of liquids and gases expense by method 

of standard diaphragms [28]. The “Metrolog” package was successfully 

implemented in 1988 at the “Silikaat” production association (Tallinn) 

with awarding of the package developers by the Ministry of Construction 
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Materials Industry of the ESSR. At the same time, a number of useful 

tools for PC ISKRA–226 have been developed and presented in [26] with 
source codes, allowing you to easily modify programs to suit the specific 

user requirements and expanding the scope of their applicability. 

With the introduction of the ISKRA–1030 series of PCs in 1988, which 
were significantly more advanced than ISKRA–226, we switched our 

attention to this type of Soviet PCs. ISKRA–1030 is compatible with IBM 

PC/XT PC based on the KR1810VM86 processor (similar to Intel 8086). 

ADOS (compatible with MS–DOS 2.x), MS–DOS, M86 (CP/M), INMOS 
(UNIX) were used as operating systems. In addition, ADOS was obtained 

from MC–DOS 2.x by translating the interface into Russian in the basic 

encoding. First of all, as a result of the mastering of this type of PC, we 
have prepared an extended reference manual describing the architecture 

and software of PC ISKRA–1030 in sufficient detail. The characteristics 

of the main components of the PC and its software, the programming 
language Basic, the text editor and a number of other software tools of a 

wide purpose are presented in the book [27]. The chapters of the book 

characterize its content and purpose quite transparently, namely: 

1. Architecture of PC ISKRA–1030 

2. ISKRA–1030 software architecture and functions 
3. Operating system ADOS of PC ISKRA–1030 

4. Basics of programming in language Basic of ISKRA–1030 

5. Useful examples of Basic–programs for PC ISKRA–1030 

6. Expansion of the expressive means of the language Basic ISKRA–1030 
7. Description and operation of Parcella software package 

8. MINIDOS minimum basis system 

9. Personal computer software 

Along with our programs that perform important mass procedures, the 

book presents MINIDOS minimum basic system for PC and the Parcella 
package with source code to expand the facilities of the Basic language, 

developed at the Design and Technology Institute of Industry of Gosstroi 

ESSR in 1990. While MINIDOS is an optimized by us version of the 
basic ADOS system, ensuring the efficient operation of PC ISKRA–1030 

on minimal resources. At the same time, we paid great attention to both 

the experience of working with PC ISKRA–1030 and the features of its 

application, as well as the useful recommendations to the user. Whenever 
possible, useful software tools of both the special and the mass nature, 

along with the most effective technologies for using these tools to solve 

some or other applied user applications, were offered. 

Since this PC model is unified with such a well–known system as IBM 

PC/XT, this book has become quite relevant for any user operating PCs 
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compatible with the IBM PC/XT/AT series. Thus, the book presents both 

application and system software developed by us for PC ISKRA–1030 in 
1988–1991. In the future, many of our software designed for PC ISKRA–

1030 have been adapted for more powerful PCs running MS Windows 3.1 

and above. The book was designed for a rather wide range of specialists 
using PCs in their activities, as well as students and graduatе students 

studying the course “Fundamentals of computer science and computer 

technology”, and at one time was quite popular in the USSR. 

1.3. Special courses and books edition on computer science 

In addition to this, along with the development of application and system 

software for mainframes and PCs, accompanied, as necessary, by the 
preparation and publication of relevant manuals and books, we published 

the reference books and special book publications related to some aspects 

of the computer technology used by us. In addition, in order to provide 

universities with educational material, we have prepared and published 
books on computer science, programming languages, statistics and some 

other university disciplines. 

So, book [29] describes the basics of working with mass service software 

(MSS) – utilities. More than 160 PCs utilities are described (including a 

number of our tools) compatible with IBM PC/XT/AT and PS/2, which 
are designed to implement such important procedures as virus detection 

and their neutralization; maintenance of disk file structures expansion of 

capabilities of monitor, keyboard, printers and disk devices; information 
and reference; PC operation administration; file archiving and protection 

against unauthorized access; computational process control; diagnostics 

and testing of the main components of the PCs system; intercomputer 

communication. Many of the utilities described were the best or some of 
the best tools at that time of this type. Given the importance of this type 

of tools for any PC user, the book appeared at that time undoubtedly was 

useful for students on the course "Fundamentals of computer science and 
computing" as well as for all PC users. 

ChiWriter – a commercial scientific text editor for MS DOS, created by 
C. Horstmann in 1986. It was one of the first WYSIWYG editors that 

could work with scientific texts containing as well as the mathematical 

and chemical formulae, even on IBM PC XT computers that were then 
common. Our book [30] describes and provides the basics of working 

with ChiWriter editor as well as the basics of statistical analysis on PCs 

compatible with IBM PC/XT/AT. On other hand, our book [31] describes 
working with Borland firm's Turbo Pascal, an integrated development 

environment for the Pascal programming language. Turbo Pascal is often 
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used in schools to teach programming, and since the early 1990s, Turbo 

Pascal has been used in universities to study fundamental programming 
concepts. The concept, organization and implementation of the Pascal 

version from Borland allowed it to become the standard of the Pascal de 

facto language. The book discusses the structural organization of Turbo 
Pascal 5.5 and the purpose of its main components, in it a programming 

framework with specific examples and useful annexes is presented. And 

although the book is aimed at readers with little experience with PCs, it 

can be useful for specialists, as it allows you to not only get acquainted 
with the Pascal language, but also to take a fresh look at the well-known 

principles of programming. The book is intended for engineers, students 

and schoolchildren, using PCs compatible with IBM PC/XT/AT and PS/2 
in their professional and educational activities. 

A characteristic feature of using PCs is the organization of information 
exchange thru communication channels based on them. It is facilitated 

not only by the rapid growth of the fleet of different types of PCs, the 

emergence of affordable technical means, but also by the urgent need to 
quickly solve a number of important tasks in many applications: various 

kinds of information services; commercial, exchange and management 

activities; e–post; banking; records management and much more. In the 
tutorial [32], the basic principles of the construction and functioning of 

the both local and global computer networks, as well as the principles of 

the interaction of network devices, the work of popular network services, 

such as the World Wide Web and e–post, are discussed network security. 
The manual is aimed at students studying the discipline "Informatics". 

The book [33] is a chrestomathy representing at that time a number of 
promising and popular software tools, descriptions and basics of working 

with known packages for personal computers are given, namely: Sprint – 

is a text–based word processor for MS–DOS, first published by Borland 
in 1987; Quattro Pro – a spreadsheet program developed by Borland, 

AutoSketch – a drawing automation system, MathCAD – a package for 

the verification, validation, documentation and re–use of mathematical 
calculations in engineering and science, notably mechanical, electrical, 

and civil engineering, Expert Choice – decision–making software that is 

based on multi–criteria decision making, NewsMaster – a rather simple 

publishing system, PkWare file archiving utility and several others. At 
that, the book concludes with a review article “Homogeneous Structures: 

Theoretical and Applied Aspects” related to the problematics of cellular 

automata. The chrestomathy was a rather demanded book in the USSR. 

Having many years of teaching experience in the course "Fundamentals 

of Informatics and Computer Engineering", in the textbooks [34,35] we 
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considered the basics of computer informatics, its application sections 

that make up their software tools, and methods of working with the most 
typical of them, as well as the history of the development of computer 

technologies, its state and development prospects at that time, without 

which it would be impossible to form a modern computer worldview. 

Of particular note is the historical excursion into computing technology 

and software along with the main formal models of computers, among 
which the first in the USSR presentation at the level of textbooks for 

universities of a new computational model of highly parallel action – 

homogeneous structures (cellular automata). The 1st book has survived 
two editions and was widely in demand in the USSR, even today there 

are many references to it. The both books are intended for students of 

universities and colleges of natural science, students of courses and all 

those, who independently master the computer world. 

Books [36-39] in Russian and English contain our lectures on the general 
statistics theory given for many universities whose programs are focused 

on economic and non–mathematical profiles. So, book contents [36] is: 

Chapter 1. Subject and Method of Statistical Science 

1.1. Statistics subject and its location 

1.2. A brief tour of the history of statistics 
1.3. The principles of organizing the state statistical service 

1.4. Objectives of statistics and features of its methodology 

1.5. Basic concepts and categories of statistics 

Chapter 2. Elements of the Theory of Probability 
2.1. The classical concept of probability and combinatorics 

2.2. Random variables and laws of their distribution 

2.3. Probability distribution characteristics 
2.4. Basic laws of probability distribution 

2.5. Criteria of basic distributions 

Chapter 3. Basics of Statistical Observation 

3.1. Statistical observation program and plan 
3.2. Basic forms, types and methods of statistical observation 

3.3. Statistical observation accuracy issues 

3.4. Monitoring the results of statistical observation 
3.5. Special issues in reporting and census 

Chapter 4. Summary, Grouping, and Presentation of Statistics 

4.1. Data summary objectives and content 
4.2. Basics of the method of grouping statistical data 

4.3. Interval groupings and classifications 

4.4. Tabular presentation of statistics 

4.5. Statistical distribution series 
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4.6. Graphical presentation of statistics 

Chapter 5. Absolute and Relative Statistics 
5.1. Absolute statistical quantities 

5.2. Relative statistical quantities 

Chapter 6. Basics of the Method of Mean Values 
6.1. Arithmetic mean properties 

6.2. Other types of averages and their choice 

6.3. Structural averages of populations 

6.4. The method of averages is an important generalization technique 
Chapter 7. Elements of Variation Series Analysis 

7.1. Indicators of variation of populations 

7.2. Measures of variation of grouped population data 
7.3. Distribution curve shape analysis elements 

7.4. Elements of sampling theory 

7.5. Elements of correlation and regression analysis 
Chapter 8. Elements of Time Series Analysis 

8.1. Time series types, their construction and presentation 

8.2. Time series statistics 

8.3. Time series averages 
8.4. Identification of the main trend of the time series 

8.5. Analysis of the random component of the time series 

8.6. Investigation of periodic oscillations of a series 
8.7. Comparative and coherent analyzes of dynamic series 

Chapter 9. Elements of the Index Analysis Method 

9.1. The concept of indexes, their types and purpose 

9.2. Individual and aggregate indices 
9.3. Average, chain and base indices 

9.4. The most important economic indices and their relationship 

Chapter 10. Computer Tools for Statistical Analysis 
10.1. An overview of statistical software 

10.2. Using a class of personal computers 

10.3. Elements of statistical analysis in the Maple system 

The chapters cover extensive material on the general theory of statistics - 

from historical excursion, elementary statistics to elements of probability 
theory, regression and correlation analyses, analysis of variation and 

dynamic series, elements of the index method along with discussion of 

statistical analysis software. We introduced a number of new indices that 
characterize the creative activity of the researcher. At last, as part of the 

descriptive statistics software, a number of mass procedures based on the 

Maple system are presented. The existence in the books of a number of 

non–traditional topics makes their as useful ones for those who somehow 
deal the statistical analysis of various types in their activities. 



 - 16 - 

CHAPTER 2: Computer Mathematics Systems 

Computer mathematics was the result, above all, of solving the problems 

of classical mathematics through computers. During the existence of 

computers with limited computing capabilities, we could only talk about 
a numeric solution of mathematical and engineering problems. But, with 

the advent of computers of sufficient power and the development of the 

computer-oriented algebraic computation methods, there were immediate 
prerequisites for creating computer mathematics systems (CMS), which 

became the main tool of computer mathematics. Today, CMS are used to 

solve various scientific, engineering, educational problems, to visualize 

data and calculation results, as well as convenient mathematical guides. 
The development of CMS has come many years and today among the 

most famous universal CMS can be noted such as Maple, Mathematica, 

MathCAD and Matlab, among which the leaders are the first two. CMS 
find more and more broad application in a lot of areas both natural and 

economical and social sciences such as chemistry, mathematics, physics, 

computer science, technologies, education, etc. Systems such as Maple, 
Mathematica, Reduce, MuPAD, Derive, Magma, Axiom, GAP, Maxima, 

MathPiper, etc. are increasingly in demand for teaching mathematically 

oriented disciplines, in scientific research and technology. These systems 

are the main software for scientists, researchers, teachers and engineers. 
Research based on CMS technology tends to combine algebraic methods 

well with advanced computational methods. In this sense, CMS is an 

interdisciplinary field between mathematics and computer science, in 
which researches focuses both on the development of algorithms for 

algebraic (symbolic) and numerical calculations and data processing, and 

on the creation of programming languages and a software environment 

for implementing of this type of algorithms for various tasks based on 
them. Below we have described the results of our quite serious work with 

Maple and Mathematica – the undisputed CMS leaders for today, which 

was carried out in the following areas, namely: 

– the detailed testing of systems with identification of their shortcomings, 

limitations and errors; 
– lectures on Maple and Mathematica systems at universities in Belarus, 

the Baltic States, Russia and Ukraine; 

– development in the environment of the CMSs as both of system tools 
that extend and/or improve the functionality of systems, and their various 

applications in mathematics, physics and technology; 

– development of proposals for efficient use of systems and programming 
in their environment, including hidden capabilities; 

– preparing and publishing Maple and Mathematica books and guides. 
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Our publications [42-73] cover all aspects of working with both CMS. 

The working with systems was carried out by us from 1996 to 2020 with 
alternating emphasis both between systems and between other types of 

works. A distinctive feature of the overwhelming number of books is the 

inclusion of source codes in them that explain certain features of the 
programming techniques used and also used non–standard programming 

techniques. The attached to some books are CDs with our libraries and 

software packages. Many of the above books and our software tools for 

Maple and Mathematica are Freeware license and available at address 
https://sites.google.com/view/aladjevbookssoft/home. A number of our 

books on Maple and Mathematica in the former USSR have repeatedly 

been recognized as one of the best in computer mathematics systems. 
Along with the books, we were part of the organizing committees of the 

international and republican conferences with the presentation of plenary 

reports on computer mathematics systems containing our developments 
in this direction [74-91,113,183]. 

Having published in 1991 year a book on MathCAD [40], the first in the 
USSR introducing a domestic reader to the field of mathematical means 

aimed at automating the solution of mathematical and technical problems 

on a computer, then books were prepared on systems such as Mathematica 
and Maple. Exactly to the last system our attention was directed for a 

longer time. This was primarily due to the fact that it was this system that 

was used by me and my colleagues from Lithuania, Latvia and Belarus in 

a lot of applications of mathematical and engineering–physical nature. 

Our publication in 1996–1998 in the USSR of books that were among the 

first books on Mathematica and Maple systems (including our numerous 
lectures on them) gave rise numerous contacting us with a lot of rather 

interesting questions on the systems that compete with each other and in 

many ways are similar. On today, there are more than 500. The bulk was 
and is quite trivial, but there were many issues that require quite serious 

research. None of these questions went unnoticed. So, among this mass 

of letters, a number of questions were contained, the solution of which 
initiated the creation of many of the procedures presented in our package 

and library for the Mathematica and Maple systems, respectively. They 

will be discussed below. Taking this opportunity, we express our special 

gratitude to the authors of the letters, whose questions made it possible to 
formalize them as separate problems useful both for practical application 

and for educational purposes. In addition, in the process of studying of 

these questions, we were able to identify many features, limitations and 
shortcomings of both systems, along with the discovery of a number of 

rather interesting them undocumented and hidden possibilities. 

https://sites.google.com/view/aladjevbookssoft/home
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2.1. Background of interest in these issues 

Our first acquaintance with computer mathematics problems dates back 

to the mathematical package MathCAD 2.52 as a new at that time unique 

means of automating scientific and technical problems of computational 

nature. VASCO (Victor Aladjev Software COmpany), created in April 
1991, along with the development of software and research in the field of 

theory and applications of homogeneous structures (Cellular Automata), 

set one of its main tasks to prepare and publish a series of books on the 
personal computers software. In this context, in May–November 1990, on 

a PC ISKRA–1030 compatible with IBM PC/XT, we conducted a rather 

comprehensive test of the MathCAD 2.52 package (hereinafter simply 
MathCAD). The given work was carried out in the framework of creative 

cooperation with MathSoft (USA) with their essential financial support 

and the opportunity to familiarize themselves with their developments in 

the field of creating software oriented to solving computing problems in 
various areas of human activity. As a result of the package operating and 

comprehensive testing of the package was the book [40], which was the 

first serious publication of this topic in the USSR and was of a reference, 
methodical and practical in nature. The book was a rather demanded. 

The book, along with what is said, is organized in such a way that not 
only provides all the necessary information on working with MathCAD 

2.52, but also offers the most effective techniques when working with it, 

focusing on its strengths and weaknesses. A number of examples given 
in the book are both illustrative in nature and can be used as the finished 

software fragments in the practical work of the user. At the same time, 

the given book presents our MINIDOS/MathCAD system, based on the 

previously developed MINIDOS system [27] for PC ISKRA–1030 and 
package MathCAD 2.52 in the process of working with MathCAD and 

focused on PC ISKRA–1030 with limited resources and providing the 

following important functions, namely: 

– performance improving of the package MathCAD 2.52 on PCs with the 

limited computing resources; 
– ease of use in the package MathCAD 2.52 of the MS DOS instructions. 

The created system is rather efficient, reliable and compact, located on 2 

360K diskettes. The system was used in many organizations of the USSR. 

All this made the book useful and popular enough material and largely 

contributed to the growth of interest in package MathCAD in the USSR. 

As part of the subsequent mastering of the computer mathematics, we 
studied the free system of computer algebra REDUCE, focused primarily 

on algebraical solution of physical problems. The system is completely 

written in language Portable Standard Lisp – a dialect of Lisp. We have 
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done a rather detailed testing of the first versions of the REDUCE system 

whose results are reflected in the book [41], that presents the description 
and basis of work in the system with a number of examples and essential 

recommendations. Subsequently, the REDUCE has become close to such 

well–known systems as Maple and Mathematica. 

2.2. Computer mathematics system Mathematica 

The beginning of Mathematica mastering dates back to 1994, when the 

Mathematica 2.2 was chosen by us to solve and experimental research a 
number of mathematical tasks, including modelling certain behavioural 

(dynamic) properties of homogeneous structures (cellular automata) of 

dimensions 1 and 2. The Mathematica 2.2 was used and tested in Tallinn 
firms VASCO Ltd. and SALCOMBE Eesti Ltd. on a COMPAQ Contura 

PC compatible with IBM PC/AT–486. In addition, a rather significant 

point should be noted – the system was tested with a minimum amount 

of reference information on it, which was limited mainly to its reference 
information. However, this aspect, along with certain inconveniences, 

contributed to a deeper and more comprehensive testing. Note that the 

mastering of the system resulted in two books published in Belarus and 
Russia [42,43], which were among the first publications on this topic in 

the USSR. Moreover, Mathematica was introduced as one of the chapters 

in the textbooks for universities [34,35], which helped to familiarize a 
rather wide range of Soviet students with the Mathematica system. 

At the same time, we began collecting the most interesting procedures 
that provide useful, quite mass functions, including functions that extend 

the built–in system tools and/or eliminate certain their shortcomings and 

limitations, as well as solve specifical applications. Soon our focus was 

shifted to Mathematica's main competitor – Maple V [45] – and again we 
returned to active work with Mathematica only with the advent of its 8th 

version. Having resumed active use of Mathematica from its 8th version 

in 2010, we used it with certain intervals until the end of 2020 to solve 
physical and mathematical problems, model cellular automata and other 

objects, teach the course “Computer Mathematics Systems”, preparing 

publications, testing newly appearing versions, including the last version 
at that time 12.1.1.0. The main results of this activity are reflected in our 

books [66-73,92-94] and in our package MathToolBox, whose features 

are briefly presented below. These books are widely used in universities 

of the former USSR in the course “Computer Mathematics Systems”, by 
containing not only courses in Mathematica, but also a lot of useful and 

instructive practical examples of procedural & functional programming, 

revealing many features and subtleties of programming in Mathematica 
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and offering effective methods of programming, organizing user datafiles 

along with many other aspects of Mathematica system use. These books 
are oriented on a wide circle of the users from computer mathematics 

systems, researchers, teachers and students of universities for courses of 

computer science, physics, mathematics, and a number of other natural 
disciplines. These books will be of interest to the specialists of industry 

and technology which use the computer mathematics systems in own 

professional activity. At last, books are useful enough handbooks with 

fruitful methods on the procedural and functional programming in the 
Mathematica system. Many of these books are included in the lists of 

mandatory or additional literature on the university courses, magister and 

postgraduate programs linked with computer mathematics systems and 
computer mathematics. At last, on the Internet you can find a lot of web–

sites where a number of our books can be downloaded for free of charge 

and/or read with or without registration, for example in [113,183]. 

The package contains the procedures and functions created in process of 

deep testing, programming of various tasks in Mathematica along with 
preparation of books published in Belarus, Estonia, Lithuania, Russia, 

Ukraine and USA (https://sites.google.com/view/aladjevbookssoft/home). 

The package contents has been tested in the system Mathematica 8.0.0 – 
12.1.1 on PC MicroLink 500 with OS Windows XP Professional (Version 

5.1, Build 2600, Service Pack 3) and on PC Dell OptiPlex 3020 with OS 

Windows 7 Professional (Version 6.1.7601, Build 7601, Service Pack 1) 

during January 2013 – April 2014 & October 2014 – November 2020, 
occasionally, with the considerable pauses in the work. A rather detailed 

description of software represented in the package along with the most 

typical examples of its application can be found in the above our books. 

The MathToolBox package contains more than 1420 means of different 

purpose which eliminate restrictions of a number of standard tools of the 
Mathematica system or complement their alonging with expanding the 

Mathematica software with new tools. In this context, the package can 

serve as a certain additional effective tool of procedural and functional 
programming, especially useful in the numerous appendices where some 

non–standard evaluations have to accompany programming. In addition, 

tools presented in the given package have a direct relationship to certain 

principal questions of procedural and functional programming in the 
Mathematica system, not only for the decision of the applied problems, 

but, first of all, for creation of software extending frequently used tools 

of the system and/or eliminating their defects or extending the system 
with new facilities. The software presented in this package contains a lot 

of useful and effective receptions of programming in the Mathematica 

system, and extends its software that allows to program the problems of 

https://sites.google.com/view/aladjevbookssoft/home
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various purpose much simply and effectively. The MathToolBox not 

only contains a lot of useful procedures and functions, but can serve as a 
rather useful collection of programming examples using both standard 

and non–standard techniques of functional and procedural programming 

in the Mathematica. The additional tools composing the MathToolBox 
package embrace the next sections of the Mathematica system, namely: 

– additional tools in interactive mode of the Mathematica system 
– additional tools of processing of expressions 

– additional tools of processing of symbols and strings 

– additional tools of processing of sequences and lists 
– additional tools expanding standard built–in functions or the system 

software as a whole (control structures branching and loop, etc.) 

– determination of procedures in the Mathematica software 

– determination of the user functions and pure functions 
– tools of testing of procedures and functions 

– headings of procedures and function 

– formal arguments of procedures and functions 
– local variables of modules and blocks; means of their processing 

– global variables of modules and blocks; means of their processing 

– attributes, options and values by default for arguments of the user 
blocks, functions and modules; additional means of their processing 

– useful additional means for processing of procedures and functions 

– additional means of the processing of internal Mathematica files 

– additional means of the processing of external Mathematica files 
– additional tools of the processing of attributes of directories and files 

– additional and special means of processing of directories and files 

– additional tools of work with packages and contexts ascribed to them 
– organization of the user software in the Mathematica system. 

The package tools can be successfully used as a fairly good collection of 
means for programming of mass typical problems in Mathematica, that 

illustrate both standard and non–standard programming techniques in the 

Mathematica. Archive Archive76.ZIP with this package can be freely 
downloaded here (https://yadi.sk/d/2GyQU2pQ3ZETZT). The archive 

contains five files of formats {nb, mx, cdf, m, txt}. Such approach allows 

to satisfy the user using different operating platforms. The memory size 

demanded for the MathToolBox in Mathematica of version 12.1.1.0 (on 
platform Windows 7 Professional) is a little more 11.72 Mb whereas the 

number of tools whose definitions are located in the package is 1424. 

Given a rather high level of longevity of basic programming language 
Mathematica which practically unchanged from version to version, the 

relevance of the package MathToolBox quite prolonged and the package 

can be long enough used with subsequent versions of Mathematica. 

https://yadi.sk/d/2GyQU2pQ3ZETZT
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2.3. Computer mathematics system Maple 

In 1997, having gained some experience using Mathematica, we, on the 

basis of an agreement with the MapleSoft on creative cooperation, began 

to test the Maple system. Under this agreement, we have been provided 

with system documentation along with all subsequent versions of the 
system itself. In turn, we carried out a rather comprehensive testing of 

the system, the development of various projects based on it, the holding 

of a number of courses in the universities of Belarus and the Baltic States, 
the publication on this basis of a series of books and textbooks on Maple 

system and its applications, which were published in Belarus, Ukraine, 

Lithuania, Estonia and the USA [95-113]. Along with books, the results 
of the study system were presented by plenary reports on international 

conferences on mathematics and computer mathematics systems. At the 

same time in addition to these books that introduce the domestic user to 

the Maple, as well as to a certain extent advertising it, we familiarized 
the MapleSoft with results of our testing of the system, suggestions and 

comments; a part of our proposals were taken into account in subsequent 

versions of the Maple system. So, the main results of our activity on the 
Maple problematics are reflected in the above books, reports and in our 

library UserLib6789, whose features are briefly presented below. These 

books are widely used in universities of the former USSR in the course 
“Computer Mathematics Systems”, by containing not only courses in the 

Maple, but also a number of useful and instructive practical examples of 

procedural programming, revealing a number of features and subtleties 

of programming in the Maple system and offering effective methods of 
programming, organizing user data files along with many other aspects 

of Maple system use. These books are oriented on a wide enough circle 

of the users from computer mathematics systems, researchers, teachers 
and students of universities for courses of computer science, physics, 

mathematics, and a lot of other natural disciplines. The books will be of 

interest also to the specialists of industry and technology that use the 

computer mathematics systems in own professional activity. At last, the 
books are useful handbooks with fruitful methods on the procedural 

programming in the Maple system. Many of these books are included in 

the lists of mandatory literature on the university courses, magister and 
postgraduate programs linked with computer mathematics systems and 

computer mathematics. At last, on the Internet you can find a lot of web–

sites where a number of our books can be downloaded for free of charge 
and/or read with or without registration. UserLib6789 was successfully 

used in the development of a lot of projects of physical and mathematical 

orientation, sometimes allowing to significantly simplify programming; 
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library tools are successfully enough used for illustrative purposes when 

mastering the Maple software environment. So, many library means were 
initiated by conducting a lot of courses on the Maple system at different 

levels, held in 2001–2006 for teachers and doctoral students of a number 

of universities, as well as researchers from academic institutes of the CIS, 
Baltic States, etc. Thus, our activity in using the package, working with 

letters from readers of our books and conducting a series of courses are 

three main sources which stimulated the emergence of the UserLib6789 

library, attached to most of our books. The additional tools composing 
the UserLib6789 library embrace all main themes of the Maple system. 

The last version of the library contains tools oriented upon the following 

kinds of processing: 

– tools of general destination 

– tools of operation with procedural and modular objects of the Maple 
– tools of operation with numeric expressions 

– tools of operation with string and symbolic expressions 

– tools of operation with the lists, the sets and the tables 
– tools of supporting of data structures of a special type 

– tools of supporting of bit–by–bit processing of the information 

– tools expanding graphic possibilities of the Maple system 
– tools for expanding and improving the standard means of the Maple 

– tools of operating with data files and Maple–documents: 

 tools of operating with TEXT and BINARY data files 

 tools of operating with Maple data files 
 special tools for operating with data files 

– tools of operating with the user libraries 

– tools for problems solving of mathematical analysis 
– tools for problems solving of linear algebra: 

 tools of general destination and of work with the rtable–objects 

– tools for supporting of problems of simple statistics: 

 tools of problems solving of descriptive statistics 
 tools of problems solving of regression analysis 

 testing tools of statistical hypotheses 

 tools for analysis of time (dynamic) series. 

Basic innovations of the above UserLib6789 library means were rather 

detailed characterized in our books [95-113,183] and in paper [114]. 

The UserLib6789 library contains the means created in process of our 
versatile activity in the Maple system during the 1998–2011 periods. The 

UserLib6789 library contains more than 850 means of different purpose 

which eliminate restrictions of a number of standard means of the Maple 

system or complement their along with expanding Maple software with 
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new tools. In this context, the library can serve as some additional tool of 

programming in Maple, especially useful in the numerous appendices 
where some non–standard evaluations have to accompany programming. 

In addition, means presented in the library have a direct relationship to 

certain principal questions of programming in the Maple system, not 
only for the decision of the applied problems, but, first of all, for creation 

of software extending frequently used facilities of the system and/or for 

eliminating their defects or extending the system with new facilities. The 

software presented in the library contains a number of rather useful and 
effective receptions of programming in the Maple system, and extends its 

software that allows to program the problems of various purposes much 

simply and effectively. The UserLib6789 library not only contains a lot 
of useful procedures and functions, but can serve as a useful collection of 

programming examples using both standard and non–standard techniques 

of procedural programming in the Maple. The UserLib6789 library has 
an organization similar to the main Maple library, allowing you to work 

with its tools in the same way as built–in Maple tools. So, UserLib6789 

not only contains a lot of useful procedures and functions, but can serve 

as an useful enough collection of programming examples using standard 
and non–standard techniques of procedural programming in the Maple. 

The tools composing the UserLib6789 library embrace all main sections 

of the Maple system whiles the library itself with all related data files is 

located in an archive, intended for Maple of versions 6 – 12 on Windows 

platforms 95/98/98SE/ME/NT/XP/2000/2003/Vista/7/8/10. In particular, 
the archive contains a directory and subdirectories with basic data files of 

the library for Maple 6 – 12, data files general for Maple 6 – 12, data file 

Maple.hdb structurally analogous to the data file of the same name of the 
main Maple library (containing the library help database), text data file 

ProcUser.txt containing the source codes of all library tools, instruction 

on the library installation directly in the Maple system and a number of 

other rather useful materials about the library. The library in the period 
from March 2007 to October 2011 withstood 7 versions, of which the 

latter was supplemented by a number of newly created tools, of which 

some were included from certain our master classes on programming in 
Maple 11, given in 2010 – 2011 for Belarus and Baltic States. Many of 

these library and package tools well complement, sometimes expanding, 

the standard Maple and Mathematica tools, respectively. 

Having devoted a lot of time to comprehensive work (mastering, testing, 

project development, modelling, training, publishing books, etc.) with 
CMS Maple and Mathematica (today undeniable CMS leaders), we have 

developed a certain point of view on the comparative aspect of the both 

systems, which was presented by us in [112,115]. We accumulated many 
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considerations that made it possible to conduct at that time quite definite 

comparative analysis of both systems. Naturally, that this analysis is to a 
certain extent subjective, the development of both CMS to a certain extent 

can change preference among them according to one or another indicator, 

but the presented analysis may be of some interest to users of computer 
mathematics systems [112,115]. Note, our book [115] is featured in the 

recommended books lists by MapleSoft Inc. and Wolfram Research Inc. 

In conclusion, let summarize our opinion on the comparative evaluation 

of the Maple and Mathematica systems. Both systems are undoubtedly 

leaders among CMS today, but they are replete with numerous errors (in 
a number of cases unacceptable for systems of this kind), the elimination 

of which is given relatively little attention by developers from MapleSoft 

and Wolfram Research. Probably, for commercial reasons, developers 

often unreasonably release new releases that retain old errors and, in some 
cases, introduce both new errors and various kinds of the“architectural” 

excesses. This issue has been repeatedly raised both in our publications 

and directly to developers. However, if Maple developers are trying to 
solve the given problem in some way in open dialogue with users, then 

Wolfram Research takes any criticism (absolutely justified in the vast 

majority of cases) very painfully. A similar list could be continued. 

From our experience of rather deep use and testing of both systems, we 

note that Maple is a significantly more friendly and open system, which 
as a software environment provides a fairly developed built–in Pascal–

like imperative language of a procedural type, which greatly simplifies 

the mastery of the package to the user who has experience in modern 

programming in the environment of one of the procedural languages. 
Whereas Mathematica has to a certain extent "archaic" (more precisely, 

rather unusual) and not so elegant language, in a number of respects, 

different from many popular programming languages. 

Meanwhile, both systems are not universal from the point of view of the 

programming systems, preventing the user from creating tools that to run 
outside of the system itself (that is, their software environment does not 

fully allow creating {exe, com}–files with software created in it), which 

significantly limits the mobility of the tools created in this way. However, 
it should be noted here that not everything is so unambiguous, first of all, 

regarding the built-in language of both systems. Particularly, our analysis 

of the capabilities of Maple and Mathematica systems to solve various 
mathematical problems in scientifically and methodically context was 

noted in a number of sources, for example, [116]. And to this aspect of 

using Maple and Mathematica as a software development environment 

for mathematical problems solution our books [112,115] were devoted to. 
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CHAPTER 3: Mathematical Developmental Biology 

Mathematical Biology is a section of biology using mathematical models 

and abstractions of living organisms to study the principles governing the 

structure, development and behaviour of systems. Mathematical biology 

focuses on the use of a certain mathematical apparatus to study biological 
systems. Mathematical biology is aimed at mathematical representation 

and modelling of biological processes using mathematical methods and 

tools. Due to the complexity of living systems, the mathematical biology 
uses a number of fields of mathematics and has certain contributed to the 

development of new methods. Attempts to use mathematical methods in 

biology have been known since the time of Euler, but the formation of 
mathematical biology as a special section of biology occurred only at the 

beginning of the last century mainly thanks to the works of Thompson, 

Lotka, Volpert, Rashevsky and others. From the same time, the division 

of mathematical biology into separate independent areas began, such as 
the mathematical theory of evolution, mathematical genetics, cybernetics, 

mathematical biophysics, which have achieved sufficient development 

and recognition to date with a general cognitive objective. 

The situation was somewhat different with the mathematical biology of 

development. Although fundamental works in this field of mathematical 
biology appeared at the beginning of the 20th century (Schmalhausen, 

Thompson, Bertalanfi), and then they were supported and developed by a 

number of large biologists (Waddington, Volpert, Apter and others) and 
mathematicians (Turing, John von Neumann, Tom), only the output of a 

collective monograph [117] allows us to talk about the beginning of the 

formation of mathematical biology of development as an independent 

direction in biology. The monograph presented one of the first attempts 
to bring together various studies related to application of mathematical 

approaches and methodology in developmental biology, and thereby 

approved this direction within the framework of mathematical biology. 
Here we will present some of our results in this direction. 

3.1. General prerequisites 

The development of organisms, as you known, is a mysterious process. 
How can a single cell – a fertilized egg – grow an organism that consists 

of many millions of cells forming an extremely complex self–regulating 

system? The admiration for this process increases even more, if we recall 
that it is essentially autonomous, that all cells in the body are genetically 

identical and that development is strictly controlled from the inside. So, 

speaking of the autonomy of the process, we believe the fact that all the 
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information necessary for the development of the body is contained in 

the original cell; the external environment provides for the development 
by certain energy and materials only, not information. 

Indeed, a zygote of a certain species always turns into an organism of the 
same species – whatever the environment. Growth is carried out mainly 

through a continuous process of self–reproduction of cells in the body, 

but differentiation of cells in the process of growth is more difficult to 
understand, since, according to biologists, all cells contain the same set 

of genetic instructions, i.e. new cells are genotypically identical to their 

progenitors. In this regard, the question arises: How do the cells become 
different from each other and develop into carefully developed spatial 

forms? Moreover, the entire development process is strictly controlled so 

that the different parts of the body develop in certain proportions and in 

many cases the body is able to overcome sometimes significant damage. 
Naturally, the development process is based both on rigorous control and 

adaptation mechanisms. For today, we do not know a better approach to 

finding out all the issues, except to solve similar problems for suitable 
artificial systems. In this direction a number of results were obtained. 

It should be noted, however, that study of the development phenomenon 
in the body led some researchers (Driesch, Elsasser) to the conclusion 

that the body cannot be considered as a machine. From the point of view 

of cybernetics, the general theory of systems and biology itself, it is very 
important to try to find out the question: Can a machine even develop like 

living systems and, if so, how? This is important to know for two main 

reasons: firstly, if the machine can`t develops, then the argument remains 

that living systems have certain specific phenomenon. In this case, the 
argument of cybernetics that living and non–living systems can be quite 

defined in terms of the same principles and concepts would be called into 

question. Secondly, with a positive response, that is, if the principles of 
the development of non–living systems were to a large extent understood 

and a satisfactory analogy with living systems was made, then along with 

important revolutionary applications in technology of many production 
processes, we would be able to obtain a satisfactory apparatus for study 

of living developing systems. For this we used a certain model approach 

to study a number of important phenomena of developmental biology, 

based mainly on infinite automata, as which were used cellular automata, 
that is, a discrete modelling method was used. So, naturally, the discrete 

approach can`t be seen as an alternative to the continuous development 

of living systems, but at the conceptual level it may help to clarify some 
fundamental issues of biological development. Now, below let's consider 

the main attempts in this direction at that time. 
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3.2. Discrete modeling in developmental biology 

A body development as a rule consists of growth and differentiation. 

Growth, as is known, means simply increasing the size of the organism 

mainly due to the self–reproduction of cells. Differentiation is a much 

more complex process, and it is advisable to distinguish at least 2 of its 
types: spatial and phenotypic, which M. Apter calls functional. So, in a 

growing tissue, a change in the shape and configuration of intercellular 

communication (spatial differentiation) can be distinguished along with 
an increase in the differentiation of individual cell types (phenotypic). At 

that, it should be noted that for spatial differentiation in biology there is 

an established term "morphogenesis", whereas for modelling purposes, 
in our opinion, the first term is more suitable. 

Sure, phenotypic differentiation also takes place in spatial differentiation, 
but for simplicity we consider them separately. The developing organism 

is characterized not only by the ability to achieve a complex spatial and 

phenotypic differentiation, but to a greater or lesser extent it has ability to 
regulation and regeneration. By regulation, we mean the property of an 

organism to develop into a normal individual, even if it was subjected to 

changes in the process of development (for example, during the removal 

or restructuring of cells), whereas by regeneration we will understood 
the property of the organism to restore any disorder that that organism 

received at the time of its complete development. 

Despite the importance of understanding of the biological development, 

including spatial and phenotypic differentiation, regulation, regeneration, 

and the phenomenon of self–reproduction, attempts to achieve success in 
modelling this process can be quite attributed to the 1st stage of the model 

period which is characterized by modelling individual phenomena of the 

development process with a wide enough variety of techniques used for 
modelling. The principle of research was common to all these models: 

the formalization of the phenomenon being studied → building a specific 

model → a comparative analysis of the functioning of the model and the 

real biological phenomenon. The main role of the first phase of modeling 
can be characterized by the fact that a number of complex development 

processes were given satisfactory formalization that was adjusted based 

on the analysis of numerous formal models [117-128]. The analyses of a 
number of models allowed a new look at some regulatory mechanisms of 

development. Meanwhile, we had a number of models unrelated by the 

general theoretical base, which complicated to obtain some conclusions. 

Naturally, a similar situation did not contribute to the development of a 

single apparatus for modelling developmental biology. However, within 
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the framework of the first stage, two techniques for modelling a number 

of developmental phenomena were arisen: the cellular automata and the 
developing parallel Lindermayer grammars. Cellular automata afterward 

known as homogeneous structures (HS) were used by von Neumann to 

study the self–reproduction problem, and parallel developing grammars 
were first introduced by A. Lindermayer to model morphogenesis [129–

132] and subsequently were called L–systems. Homogeneous structures 

and L–systems were at that time the most common and popular apparatus 

of cybernetic discrete modelling of development [113,117,127-133]. We 
define in the most general terms the concept of homogeneous structures, 

at the end of the book they will be discussed in more detail. 

A copy of the same finite automaton is placed in each integer point of the 

d–dimensional Euclidean space (Zd). Each of them is associated with a 
finite number of neighbouring automata according to a neighbourhood 

index (X), which is the same for all automata of space. At each integer 

time t > 0, an automaton changes its state from the finite set A = {0,1,2,..., 

n–1} depending on the state configuration of itself and all neighbouring 
automatons at the previous moment t–1. At the same time, changes in the 

states of an automaton are determined by the local transition function σ. 

The simultaneous application of the function σ to all automata of space 
defines a global transition function τ, which converts one configuration 

of space Zd to another. Among all possible states of the automaton of Zd, 

the so–called resting state (qo) is distinguished, the essence of which is 

that the automaton in the state of qo does not change its state at the next 

moment if all its neighbours were in the resting state. Thus, the qo state is 

entered to impose a limit on the rate of information transfer to the HS. 

So, the HS is an ordered five HS ≡ (Zd, A, X, n, qo); this is the concept of 

the so–called classical HS. Currently, the mathematical theory of HS is a 

fairly well–developed apparatus for the study of many discrete processes 
(the HS problematics is discussed in more detail at the end of the book), 

which allows by formal means to investigate at the cellular level such 

developmental phenomena as growth, self–reproduction, differentiation, 
regulation and regeneration. For today, the HS have made it possible to 

implement a number of interesting development models that receive very 

interesting biological interpretations [117-124,126-128,134]. Along with 

these problems the HS can be satisfactorily explored development issues 
such as complexity of developing systems, processes controlling growth, 

regulation and regeneration, sustainability of the development processes, 

necessary and sufficient regulatory and regeneration conditions, etc. 

But along with this, HS give rise to difficulties in modelling of a number 

of biological phenomena in them. The main difficulties are related to the 
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high sensitivity of HS to the dimensionality of the models and also to the 

serious restrictions on the possibility of cell division within the simulated 
developing organism. Given the difficulties of modelling of a number of 

biological phenomena in HS, Lindermayer [129] introduced the above–

mentioned systems (L–systems). Within the framework of L–systems for 
modelling morphogenesis and growing structures, Lindermayer proposed 

branching algorithms [130], while a number of authors [131] introduced 

graphical generating systems for modelling development and growth. A 

number of growing algorithms have been implemented on the basis of L–

systems, a review of which can be found in Lindermayer's excellent work 

[129]. Lück G. and Lück J. [135] also used an L–system to explain tissue 

growth. Over time, a large number of models of both growth and growth 
as part of the overall development phenomenon appeared on the basis of 

L–systems. Therefore, it is appropriate to introduce the concept of the L–

systems. We will introduce the concept at a meaningful level. 

A L–system is a triple of the form L ≡ (V, ωo, R), where: 

V — an alphabet of the system; 

ωo — an axiom, non–empty chain of symbols over alphabet V; 

R — a set of output rules. 

In the standard version of the L–system, the output rules are of the form 

v → α, where v is a symbol of the given alphabet V, αV∗ is a chain of 

characters (possibly empty chain) in the same alphabet. Thus, each rule 

can be interpreted either as a division of a cell (|α| > 1), its modification 
(|α| = 1), or as its death (|α| = 0). If there is no more than one output rule 

for any symbol of an alphabet V, then L–system is called deterministic. 

Systems having more than one output rule for some symbols of alphabet 
V are called non–deterministic. Both types of the system are used. 

Thus, L–systems substantially expand one–dimensional HS in the sense 
of a plurality of generated words. From the point of view of biological 

adequacy, they receive quite satisfactory interpretations. L–systems are 

already well established in describing a number of biological processes 
and now, in all likelihood, represent the most mathematically developed 

and biologically adequate discrete apparatus for modeling developmental 

biology. In relation to the apparatus itself, L–systems are more abstract 

than HS, if only because they are not rigidly bound to the coordinate 
system and, in fact, are one of the types of parallel formal grammars that 

are intensively studied [132]. At that, it should be noted that HS may be 

considered as a certain type of parallel grammar [136-138], which is the 
proper subclass of the class of all L–grammars. Below, we will analyze 

the HS and L–systems in more detail for their capabilities for biological 

modelling problems, which, sometimes, are quite different. 



 - 31 - 

The biological interpretations of HS base on the following assumptions: 

1. As a biological unit, the cell that has some cellular automaton is most 

suitable, and all we need to know about it is the dependence of its output 

on the entrance and its state. 

2. All cells in the body have the same genotype, that is, the same set of 

instructions on its functioning. 

3. The development of the cell system depends rather significantly on the 

exchange of information between its cells. 

4. A body itself regulates the most important aspects of its development. 
In other words, the development is managed internally, not externally. 

Of course, each of these four assumptions is a simplification of the real 

state of things, but when models based on them help to achieve a certain 

clarity, new assumptions can be included in them to bring these models 

closer to reality. So, in modelling regulation, differentiation, regeneration 
in HS, in addition to these assumptions, we used the Sager principle on 

the formation of forms in accordance with the instruction system. This 

idea of a system of instructions is most attractive precisely because it can 
serve as a development of that path along which the application of theory 

of information in developmental biology is usually thought of. 

It is easy to verify that the behaviour of the finite HS can be described in 

the logical network language. And since Sugita proved the possibility of 

expressing Jacob–Mono models in the language of logical networks, than 
development models in HS can receive a certain genetic interpretation in 

the language of Jacob–Mono models. The solution to this problem and 

the results of Sugita would then prove the equivalence of Jacob–Mono 

networks and logical networks, from which the fundamental possibility 
of interpreting models implemented in HS by Jacob–Mono models, will 

follow. Modelling in HS allows you to consider development processes 

from the point of view of hierarchical structures [121-124,127,128]. So, 
the development models implemented in HS can be quite investigated by 

means of systems that are provided by the properties of HS. This approach 

allows to obtain qualitatively new results from modelling development 
processes. To simulate the process of forming axial and multi–dimension 

structures, that is an integral part of the overall development process, we 

used several types of HS [113,119,120,127,128,141,183]. 

But when discussing modelling the general development problem, it is 

necessary to add a fifth to the four assumptions mentioned above: the 
development of each organism is carried out by self–reproduction of its 

constituent cells. It is to these five basic assumptions the HS reciprocate 

very well. In this case, the cells of the developing organism are answered 

by HS automata. In fact, a real cell in its structure is much more complex 
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than our automata, but to study the problem at the cellular level, we must 

somehow simplify the problems associated with structural complexity of 
a cell, as well as the functioning of its constituent parts. This is what we 

achieve, treating the cell as a black box – a cellular automaton. 

Thus, considering intercellular interactions, we move to more high level 

of organization than that studied by Steel and Goen [117], modelling the 

enzyme systems based on Turing machines. So, we take a cell as a unit 
and in the sense of its behaviour are limited only to the dependence of its 

output on the entrance and its state at the previous moment of time. In 

principle, the HS quite admits structural level of modelling, when the 
internal organization of a single automaton of HS is investigated also 

when implementing development models in HS. In some development 

models mentioned above [128], the internal structures of the HS single 

automaton have already been used. Thus, HS quite allow modelling of 
developmental processes at lower levels than an individual cell. Time in 

HS is supposed to be discrete, whereas in fact it is continuous, but for the 

purposes of discrete cybernetic modelling of development processes this 
is not significant yet, naturally with certain essential reservations. 

Each cell has the same genotype, on which, apparently, the appearance of 
the resulting organism depends. Therefore, probably the most convenient 

way to create effective developmental models is to model the genotype 

(cell work program) [139,140]. Indeed, until now, most of the work on 
cell differentiation has been carried out at the level of interaction among 

tissues, while it is extremely significant to extend our understanding to 

the nature of the processes taking place at the cellular level. With this 

approach, we throw out single–celled organisms that are experiencing 
development also, which is mainly the result of intracellular activity. 

However, at our modelling stage, we are still forced to put up with this. 

Above, we assumed that all cells have the same genotype, that is, each 
cell in the body, starting with a zygote, begins to work with the same set 

of genetic instructions. The very concept of the HS includes exactly this 

aspect, on which we will dwell a little more. 

There is evidence that in a number of organisms different cells may have 

a different genotype. However, it does not follow from the definition of 
the HS itself that all cells of a developing organism simulated on such 

structures are identical. Indeed, in the presence of the same program of 

work, the HS single automata, as a result of differentiation (changes in 
internal states) in different regions of homogeneous space, have different 

internal states (phenotypes) and therefore react differently to the same 

input signals. Thus, to differentiation of cell phenotypes corresponds in 

the HS to differentiation of internal states of single automata of the HS. 
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In this regard, at each stage of development, all or a certain part of HS, 

differentiating, acquires in the general case new properties. 

In general, the term “differentiation” has a number of interpretations. A 

rather interesting interpretation of this term was given by M. Apter. From 
the point of view of types of differentiation, regionalization is of greatest 

interest in the first place, or, according to Apter [134], the main question 

is rather to find out how the structure arises first at the organization level 
(how cells are “self–marking”) than to establish the nature of physical 

mechanism implementing this plan, although this mechanism can even 

lead to an increase in complexity. In this context HS provide a number of 
rather acceptable constructive answers to similar questions. 

Above, we assumed that the development of the body very significantly 
depends on the exchange of information between cells. At present, this 

fact is universally recognized and has a number of evidence in its favour 

[127,134]. In the case of the HS, such an exchange of information is the 
transfer by one elementary automaton to another (others) of symbols of 

the input (output) alphabet or a message about its state. In our view, there 

is no need for a limitation of any kind to the transfer of information from 

automaton to automaton in the HS due to the complexity of intercellular 
interactions (especially chemical) in real organisms. Since a body grows 

from a single cell (zygote) by self–reproduction of this cell, than the HS 

automaton should have the ability to generate its copy at the right time. 
This is achieved by the fact that some adjacent non–functioning single 

automaton of the HS is transferred to some non–zero internal state, thus 

becoming functional and an integral part of an already more complex 

organism. Moreover, it is assumed that once the non–functioning single 
automaton becomes functional, it will automatically receive the entire 

genotype (program of work) of the original automaton from which the 

body develops in the HS. In this we conclude the concise discussion of 
the properties of HSs in terms of the simplified biological prerequisites 

underlying development and proceed to consider the classes of problems 

relevant to a particular development process which can be modelled and 
investigated in the HSs of different types. 

The first class of problems includes the question of how differentiation, 
regulation and regeneration in the body are carried out. The models built 

for this purpose in HS made it possible to clarify a number of issues and 

formulate interesting problems for further research. Issues related to this 
class of development problems can lead to a better understanding of the 

problem of the formation of spatial structure in general. Furthermore, in 

the process of solving these issues, the HS concept has been expanded 

and made more acceptable for biological modelling [119-124,126-128]. 
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The second class of tasks refers to the study of the growth process that in 

itself does not constitute a problem from an abstract point of view, since 
it is provided by the self–reproduction of cells on which the development 

itself is based. However, this problem involves the question of how the 

body can limit its size in the process of self–reproduction of cells, if this 
should be fully provided by the genotype of the cell itself. Indeed, such 

growth is of interest when spatial differentiation can occur in the process 

of continuous self–reproduction of the original set of instructions without 

the influence of external influence. It is also essential to study the growth 
processes using a limited number of instructions for organisms consisting 

of a large number of cells. In this regard, it is promising to research the 

stability of processes of the growth and their controllability in relation to 
various kinds of disorders, since this may be of some interest for such, in 

particular, the field as oncology. A certain part of these questions have 

been investigated through growth models, some of them are discussed 
somewhat lower. 

The third class of problems – the self-reproduction of organisms. Current 
models of self-reproduction are characterized by the fact – one organism 

builds its copy. However, from the point of view of development, it is the 

question that is of greatest interest: How can a single automaton of HS, 
having begun the process of self–reproduction, give rise to some complex 

enough spatially differentiated non–trivial organism that will capable of 

self–reproduction and to a certain extent to regeneration? In this regard, 

the question arises: How does the process of forming a complex enough 
spatial organism protects itself from errors and what set of instructions 

of the original automaton of HS can this be achieved? Thus, the range of 

problems of the third class involves an approach to self–reproduction at 
the level of cells and not organisms. 

The fourth class of tasks can be described as the complexity problem in 
the biology of development. Here you can formulate a number of very 

interesting questions about the complexity of a single automaton (cell), 

from which a complex multi–cellular organism grows, about complexity 
of spatial differentiation, about the change in complexity in the process 

of development of the organism, at last about the complexity concept in 

general. Some of these questions have been explored in growth models 

and in the research of the HS in general [113,118-129,126-131,134,139], 
however the problem is still rather far from our being fully understood. 

Each of the listed tasks of the four classes described is an integral part of 

a single development process, but it is now necessary to think about how 

to decompose development into components and analyze them. At the 

same time, we should not think that some simple model will reveal all 
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the properties of this development process. Therefore, each of the task 

classes suggests a number of other possible directions for modelling, and 
the list of classes itself can subsequently be expanded. 

At the initial stage of cybernetic modelling when fundamental possibility 
itself was in doubt, such an approach using the HS was perhaps the only 

possible both in terms of the existence of some suitable apparatus and in 

terms of the readiness of biology itself. Moreover, HS themselves largely 
originated precisely as a tool of such modelling. However, by modelling 

developmental processes in the HS, we largely ignored the basis of these 

processes – cell reproduction. Indeed, cell division in such models could 
be carried out only at the boundaries of the body, and its internal cells 

fundamentally did not have such possibility, since HS is always tightly 

tied to the coordinate system in the En space therefore the insert of a new 
cell between the cells encounters insurmountable difficulties. This, in 

turn, cannot but affect the quality of modelling of development processes 

in HS. Therefore, it can already be clearly noted that HS (despite the fact 

that they allow a number of interesting generalizations that significantly 
expand their capabilities for modelling developmental biology [117,127, 

128,139,140]) will not be able to fulfil the role of the universal modelling 

apparatus with which would be possible to quite successfully investigate 
developmental biology as a whole. A similar conclusion can be made and 

regarding the apparatus of L–systems. 

In order to obtain a more acceptable modelling apparatus, Le Choi [117] 

introduced parallel exchange systems which inherit the main features of 

both systems (HS and L–systems), although they also are very sensitive 
to the dimension of space and have poorly formalized elements (motion 

of modules in the space). Therefore, it is unlikely that a qualitatively new 

apparatus can be developed on the basis of these formal apparatuses, as 
was the case with the advent of L-systems inspired by 1-dimensional HS. 

Based on the detailed analysis of the main shortcomings of the existing 

simulators we tried to identify possible ways to develop a more adequate 

simulator of development processes [139,140]. Therefore, this is, firstly, 
the development of special multi-dimensional parallel grammars together 

with algorithms that allow maximum parallel execution of operations and 

insertion at any place of the word of any finite subwords; secondly, the 
use of ideas and concepts of the graph–topological apparatus and, thirdly, 

the development of a completely new modelling apparatus which is best 

adapted for the biology of development [113,144]. 

What does it really make sense to focus on now? Above all, about the 1st 

opportunity. The development of algorithms and grammars that operate 
with multi–dimensional words is really of great interest. However, here 
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again there are problems associated with dimensionality. Our search for 

multivariate grammars and algorithms satisfying such properties has not 
yet led to anything. However, researches in this direction have brought 

its positive results for modelling development biology [139,140,183]. 

Moreover, it makes no sense to expect the creation in the near future of a 

completely new apparatus that is best adapted to the needs of biology of 

development. As experience has shown, such a fundamental apparatus is 
not created quickly, and even in an almost empty place. Thus, it remains 

possible to use the ideas of the graph–topological apparatus. The most 

suitable approach at present is the discrete graph–topological approach, 
which really takes into account all these difficulties of previous systems, 

although it is even more abstract and less evident. Moreover, there are 

already some models of development using this approach. Among them 

are rather interesting models of Apter [134] and Lindenmayer [130]. In 
conclusion of what has been said I would like to emphasize that we share 

Waddington’s opinion that the basic theory should be to a certain extent 

similar to the topology of n–dimensional space. Therefore, already now 
we must outline the most significant phenomena of multi–cellular living 

developing organisms at the cellular level, look for the most appropriate 

mathematical apparatus for them, and when describing the development 
processes, we should not limit ourselves to scope of the usual concepts of 

cybernetics and mathematics! Below we will represent certain artificial 

models related to some aspects of the biological development. 

3.3. The French Flag Problem 

Subject to the above, we inevitably should come to the conclusion, that 

the differentiation of cells at highly-organized alive bodies is direct result 

of activity of extremely complex regulator mechanisms. First of all, for 
us, apparently, the effective enough acting models are really necessary, 

whose purpose should be to help with formalization of the problem and 

apparently to discover a key to understanding of the basis approaches to 
the problem decision at a language of an exact science. In the future the 

experimental approach to this problem has allowed formulating a number 

of the concepts interesting and simplifying the problem; among them it is 
necessary to mark such principles as dominance and gradients [139,140]. 

The first rather serious attempt of creation of a working model capable to 
development and regulation of axial structures was undertaken by S. Rose 

[117]. In further, a lot of interesting enough models has been suggested, 

whose comprehensive review can be found in [139,140]. However, the 
most known formal model of differentiation, regulation and regeneration 

is the French Flag Problem (FFP), offered by L. Volpert. He presented 
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the FFP during the 3rd Meeting on Theoretical Biology held in 1968 at 

Villa Serbellon (Italy). The four Serbelloni meetings took place in 1966 – 
1969 to explore questions related to the theoretical biology. Biologists, 

physicists and mathematicians raised many questions, identified relevant 

concepts and tools and stimulated the further developments of theoretical 
biology. The French flag model is a conceptual definition of morphogen. 

Morphogen is defined as a signalling molecule that acts directly on (and 

not through) cells, causing specific cellular responses depending on the 

morphogen concentration. During early body development, morphogen 
gradients generate different cell types in different spatial order. At that, 

the French flag is used to indicate the effect of morphogen on process of 

cell differentiation, namely: morphogen affects cell states depending on 
concentration, these states are presented by different colors of the French 

flag: high concentrations activate "blue", lower concentrations activate 

the "white" gene, whereas "red" is used as the default state in cells below 
the required concentration threshold. So, the FFP in its most elementary 

form is formulated as follows: 

There is a 1–dimension connected system from 3*m cells, each of which 

admits one of the states "red", "white" or "blue"; should be determined 

the rules of functioning of such cellular system whose final state is the 
configuration of French flag (CFF) which to certain extent is stable to 

external influences and damages. For solution of the FFP in its classical 

posing a lot of mathematical and automaton models has been offered, 

and their analysis from biological standpoint has been carried out [117]. 

In particular, discussions of the FFP formulation as a formal model of 

differentiation, regulation and regeneration of axial biological structures 
for concrete biological objects have been carried out. For the solution 

and research of the FFP the models on the base of a few types of cellular 

automata were used, putting before modelling a lot of tasks. In the first 
place, a question relative to the minimal complexity of a model that is 

capable to differentiation, regulation and regeneration interested us. 

It is shown, that at modelling of the FFP even on basis of polygenic one-

dimensional cellular automata, an algorithm deciding the problem should 

be an algorithm over alphabet A whose elements are symbols composing 
the CFF [139]. In addition, additional states of the model should admit a 

reasonable interpretation in the corresponding biological categories. So, 

the second question is the revealing of those sufficient conditions which 
would promote a solution of the FFP along with their rather satisfactory 

biological interpretation. From this standpoint, a lot of models have been 

investigated on the basis of the cellular automata concept. In particular, 

in [118] we presented two of the most interesting models that solve FFP. 
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The first of these models is able to a rather perfect regulation and slightly 

resembles the known model of M. Arbib however it is more simple and is 
free from a few defects of his model. Moreover, the basic properties of 

our model are absence of a gradient and thresholds along with presence 

in it of polarity, spontaneous self-limiting reactions and a bilateral stream 
of control information [128]. While the second model based on a cellular 

automaton uses a special P-automaton with memory as an elementary E-

automaton of the model. This model is also capable of perfect regulation 

and is characterized by 3 main properties, namely, existing of memory, 
polarity and spontaneous self–limiting reaction. A characteristic feature 

of the model is the absence of a two–way flow of control information. To 

the first of the marked models (in terms of the main features inherent in 
it that determine the FFP solution) is also adjacent a model based on the 

class of 1–HS* structures that allow you to solve FFP in its generalized 

formulation. An extension of the FFP can be determined as follows. In a 

1–CA* model a finite configuration Co of length r of states of elementary 

automata of the following kind is determined, namely: 

Co = □X1 X2 X3 X4 … Xr□ ;    Xj{1, 2, 3, …, a–1}    (j=1..r) 

Then, such generalized FFP is reduced to determination of a functional 

algorithm of the model (whose complexity does not depend on a number 

r of elementary automata of a differentiated chain) allowing to establish 

and support in the 1–CA* model a configuration of structural kind from 
states mentioned above, namely: 

Cf = □b11
…b1q 

b21
…b2q 

… b(a-3)1
…b(a-3)q 

b(a-2)1
…b(a-2)q 

b(a-1)1
…b(a-1)k

□ 

bpj
 = p;  p=1..(a-2);  j=1..q;  q=[r/(a-1)];  b(a-1)i

 = a-1;  i=1..k;  k=r-(a-2)q 

Because of use for solution of the generalized FFP of an approach on the 

basis of cellular automata (CA) we first of all would like to determine the 

simplest type of CA–models allowing to solve the above problem. In this 
direction there is the following result [113,117,139-141], namely: 

The generalized FFP determined in a finite alphabet W of general kind 

cannot be decided by means of an one–dimensional polygenic structure 

determined in the same states alphabet W. 

Hence, for solution of the generalized FFP even in the class of polygenic 

CA–models we need to use an alphabet, expanded relative to its initial 
alphabet and, perhaps, along with some other assumptions. So, one of 

models on the basis of a 1–CA* model uses an elementary variant of the 

symbolical sorting allowing to solve the FFP in the L. Volpert`s staging 

during no more than t = 3*m steps; where m is length of a differentiated 
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chain of automata of the model [141]. In addition, a sorting acts as one of 

kinds of a logical gradient whereas the model allows making a number of 
interesting enough conclusions of biological nature. Along with that, the 

functional algorithm of a CA*-model which decides the generalized FFP 

allows formulating the following result [113,139-141,183]: 

There is a 1–CA* model with alphabet A={0,1,2,3, ..., a–1} along with a 

functional algorithm, whose complexity does not depend on length h of 

a chain of elementary automata and that decides the generalized FFP 

during no more than t = [h/2] steps for sufficiently large values h. A set 

of all solutions of the generalized FFP which are minimal in temporal 

attitude is nonrecursive. 

The above result is a solution of the generalized FFP which for today is 
the best in the time attitude. Of this result, in particular, follows that for 

sufficiently great values a and/or h decision time of the FFP approaches 

asymptotically half of length of a differentiating chain Co of elementary 

automata of a CA*–model. Consequently, an interesting enough question 

arises: Whether exist functional algorithms of any other type that decide 

this problem for the best time? In our opinion, an essential improvement 
of decision time of the generalized FFP defined by the above result not 

seems possible. In principle, other approaches to this issue are possible. 

It is perhaps also worth pointing out that all solutions to the FFP appear 

to require three basic elements: (1) a mechanism for specifying polarity; 

(2) a mechanism for differential response of the cells, such as thresholds; 
and (3) at least one spontaneous self–limiting reaction. Today, in all the 

main models that solve FFP, to one degree or another, these 3 conditions 

or their analogues are traced. This raises the question of determination of 

a minimum set of conditions for models solving the FFP as a whole. 

A rather interesting question of study of the generalized FFP for case of 
the higher dimensionalities arises, when instead of the linear chains the 

d–dimension (d ≥ 2) networks of finite differentiable identical automata 

are considered. It is shown that, the results of solution of the generalized 

FFP rather essentially depend on the kind of d-dimension CFF too [139-
141]. The above CA–models solving the FFP, in a great extent allow to 

make clear the questions such as properties of separate automata, nature 

of connections between them, input/output control impulses, along with a 
lot of other prerequisites giving rise to dividing of cellular system along 

axis onto segments, located in a certain order. A rather detailed analysis 

from biological standpoint of these and other CA-models of regeneration, 
differentiation and regulation can be found in [113,128,139-141,183]. In 

particular, we dealt with these issues quite limited and short time. 
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3.4. The Limited Growth Problem 

One of the basic problems of the development – How can be reproduced 

a certain organism, using possibly least number of instructions? That is 

rather important from the standpoint of understanding of development in 

alive systems as the zygote should be somewhat simpler, than organism 
itself to which it gives a life. The second problem touches the restrictions 

of the sizes of an organism, growing in various conditions if such process 

is completely caused by a genotype of cells, self–reproducing during the 
growth. The third range of questions touches study of such growth when 

a spatial differentiation during continuous self–reproduction of an initial 

set of instructions without influence of external influence can take place. 
For answer to that and other questions the various formal models of the 

growth have been suggested. The current variety of models of growth is 

explained by prevalence of mechanisms of the restriction of growth of a 

developing organism that are widely spread as well as itself process of 
self–reproduction. In addition, research of mechanisms of regulation of 

growth is urgent for comprehension of the morphogenesis phenomenon 

since the growth can be considered as one–dimensional analogue of the 
morphogenesis [121,128,139-141]. The reader can familiarize oneself 

with the widely enough represented problematics of continuous models 

of biological growth in collective monograph [117] along with extensive 
bibliography cited in it. 

The certain simplest models of growth were investigated by means of the 
computer modelling by S. Ulam and his colleagues which were among 

the first initiators of study of the growth phenomenon by the discrete 

apparatus, however much earlier this problem was being investigated by 

a number of researchers (A. Thompson, L. Bertalanfi, etc.) with use of 
the continuous apparatus of the modelling. The discrete growth models 

studied by group of S. Ulam are the most suitable for description of some 

abiotic systems similar to the crystal structures, simple plants or organic 
molecules, than for real complex biological systems. In spite of that the 

work with similar models has allowed to clear up a lot of questions of the 

growth of forms in case of different restrictions (logical, geometrical and 
certain others). Researches in this direction are quite promising. 

At working with discrete growth models of S. Ulam we have used the 
apparatus of classical 2–dimensional cellular automata (2–CA), that has 

allowed to receive a lot of new rather interesting properties of discrete 

process of growth that is subjected to various recurrent rules, allowing to 
study the phenomenon by formal means [141]. The further development 

of the CA concept as a basis of discrete modeling of growth phenomenon 

has been received by J. Butler and S. Ntafos. In terms of study of growth 
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process the indubitable interest the problem of excitations spread in CAs 

models with refractority presents. In this direction, we have obtained a 
lot of quite interesting results [113]. Based on this class of CAs models a 

lot of interesting models of excitable environments has been proposed; 

part of them can be used for research of processes of self–organizing in 
systems of cellular nature of various type; the more detailed information 

on this question can be found in works [113,121,128,139-144,183]. 

Quite interesting problems of optimization arise in connection with the 

questions of restriction of process of growth. Indeed, the real biological 

organisms do not grow with no any limits, but completely supervise own 
growth during all development and vital functions. In this connection D. 

Gajski and H. Yamada have investigated the rules of growth in the CAs 

models which allow growing forms of the preset limited size [113,121]. 

The chief task here is reduced to revealing of the greatest possible size of 
the passive configurations generated by classical CAs models from some 

simple initial finite configurations. Rather interesting results concerning 

the lower estimations of sizes of such maximal passive configurations in 
terms of various key parameters of the CAs along with rather interesting 

discussions of biological interpretations of the results received in that 

direction can be found in [113]. Rather interesting questions of growing 
of chains of finite automata of a preset length can be found and in rather 

interesting works [113,139-144,183]. 

The works marked in this direction enough closely adjoin our results on 

the Limited Growth Problem (LGP) considered a few below. The LGP 

concerns a class of minimax problems in the CA-problematics, being of a 

certain interest from the standpoint of developing cellular systems of the 
various natures. Indeed, the growth process in the real biological systems 

is limited, is strictly controllable from within, and depends on genetic 

and of some external factors. Moreover, the LGP has a certain cognitive 
significance, allowing estimating in a sense a quantity of the information 

required for growth of complex multi–cellular organisms. In more detail 

with the LGP and interpretation of the received results it is possible to 
familiarize in [113,121,128,139-144,183]. 

In view of more applied aspects it is necessary to mark utility of the LGP 
for research of questions of information connection of the intercellular 

interactions of developing systems along with formation of the certain 

considerations about character of the genetic code. As distinct from the 
above CA–models researching the LGP and explaining mechanisms of 

management by the process of restriction on the basis of the CA–concept, 

there are a number of other CA–models explaining the phenomenon from 

certain other standpoints such as similarity principle, thermodynamic 
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laws, adaptation to external environment, mechanic stability, energetic 

expediency, etc. Diversity of such kind of interpretations is undoubtedly 
necessary and allows carrying out multifold research of the problems of 

growth and development as a whole. Thus, it in a certain extent can be 

considered as a biologic analogue of the principle of complementarity. 

Given the technical difficulties that arise during the immersion of quite 

complex algorithms in classical CA-models, we selected the class of CA* 
models for the LGP solution, whose definition we will introduce using 

the example of a simple one–dimensional case as follows. The structure 

1–CA* is an ordered four <Z1, A, I, Fa>, where the first two components 
of the object are defined similarly to the case of classical 1–CA, I is a set 

of control pulses and Fa is a functional algorithm (FA) of the structure. 

The functional algorithm Fa itself is determined by the set of following 
discrete equations, namely: 

a1(z )t+1 = S[Ir, a(z), Il]t
 

(Or )t+1 = R[Ir, a(z), Il]t             a
1(z), a(z)A;   Or, Ol, Ir, IlI,  t = 0,1,2,… 

(Ol )t+1 = L[Ir, a(z), Il]t 

where a1(z) and a(z) – the states of single automaton of structure; Ir (Or ) 

and Il (Ol ) are respectively right and left input (output) control pulses of 

a single z–automaton of the structure. The very essence of functioning in 

this way of a certain 1–CA* is simple and boil down to the following. 

While in state a(z) and receiving at the input control pulses Ir (right) and 

Il (left) at time t ≥ 0, at the next time (t + 1) the z–automaton enters state 

a1(z) and emits control pulses Or (right) and Ol (left) that are determined 

according to the above equations. At the same time, the output pulses of 
each z–automaton are input pulses for all its immediate neighbours. 

Thus, the set of I pulses is divided generally into two distinct subsets of 

output pulses to the left (0utl) and output pulses to the right (0utr); in this 

case, relative to the current z–automaton of the structure, it is convenient 

to conditionally classify output pulses into input pulses (entering the z–

automaton from its neighbours; Inz
l , Inz

r ) and output (transmitted by the 

z–automaton to its neighbours; 0utzl , 0utzr ). Moreover, there are obvious 

relationships between both types of indices: 0utzr ≡ Inz+1
l , 0utzl ≡ Inz–1

r , 

Inz
l ≡ 0utz–1

r , Inz
r ≡ 0utz+1

l . Obviously, if the input pulses for a z–cell 

coincide with the internal states of their respective closest neighbours (z–

1, z + 1), and the output pulses with its internal state, then the 1–CA* and 

the classical 1–CA with the Moore's neighbourhood index are identical 

and take place the relations I ≡ A, I∪A=A. Therefore, d–CA* is a certain 
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equivalent modification of classical d–CA, which much more adapted to 

consider a number of applied aspects of the CA–problematics. Note, that 
a whole series specific application of CA* models confirmed their rather 

high efficiency, first of all, from an applied point of view [113,144-147]. 

When using d–CA*, we are not bound by the limitations that occur in the 

case of classical structures; the method of functioning of d–CA* allows 

us to focus attention on the essence of the simulated objects themselves, 
minimizing the additional difficulties of programming the model in CA*, 

and the model itself is made significantly more convenient to interpret. It 

is shown that the d–CA* can be quite successfully used as an acceptable 
intermediate stage in modelling in classical structures and in studies of a 

number of questions of their dynamics [144-147]. This approach is based 

on the fact that any d–CA* can be structurally immersed in the classical 

structure. In particular, it is shown that: Any 1–CA* ≡ <Z1, A, I, Fa> are 

equivalent to classical 1–CA ≡ <Z1, A∪I, τ, X> with the neighbourhood 

index X = {–3,–2,–1,0,1,2,3}. This result is summarized onto the general 
d–dimensional case too (d > 1). Moreover, the following result occurs: 

Any 1–CA* ≡ <Z1, A, I = 0l∪0r , Fa> is modelled in strictly real time of 

classical 1–CA with the Neumann–Moore neighbourhood index X = {–1, 

0,1}, the alphabet A*=A∪0r where 0l and 0r are the sets of output pulses 

of automata 1–CA* respectively left and right. This result is summarized 

onto the general d–dimensional case too (d > 1) [113]. In any case, it is 

appropriate to note that classical d–CA are more preferable for theoretical 

research of the formal cellular model, whereas d–CA* represent in many 
respects a more acceptable environment for modelling specific objects, 

i.e. the both classes of structures represent as if two different sides of the 

classical cellular model. 

In view of the above, consider the so–called the Limited Growth Problem 

(LGP) in which is of undeniable epistemological interest from the point 
of view of developing cellular systems of various natures. In fact that the 

purely growth of real biological systems is limited, strictly controlled and 

depends on genetic and a number of external factors. Moreover, LGP is 
also of considerable cognitive importance, as it allows us to assess to a 

certain extent the amount of information required for the rearing of rather 

complex multi–cellular organisms [113]. Given the technical difficulties 

which arise when diving quite complex algorithms into classical CAs, we 
selected the CA* class of models defined above for the LGP solution. At 

the same time, as noted above, any d–CA* is structurally immersed in the 

classical d–CA, that allows the final results of the study to be adequately 
interpreted in the context of the CAs models. We define the LGP without 

breaking the commonality for the class of the simplest structures 1–CA*. 
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Let co be a finite configuration of length r from the states of the single z–

automata 1–CA* of the following form co = sss...sss under |co| = r. Then 

the LGP is reduced to the definition of the functional algorithm Fa, that 

allows to grow up from the original configuration a passive (not changed 

over time) configuration of the form cf = fff...fff of the maximal possible 

size L = L(co, Fa). The best known LGP solution for today is the next our 

result [113,140-147,183]. 

For structures 1–CA* ≡ <Z1, A, I, Fa> with values #A = 12 and #I = 4m + 

17, where m is the possible minimum propagation rate of control pulses 

in the structure, there is a functional algorithm Fa that allows to grow 

up passive configurations of the length L of single z–automata in states 

"f" from the initial final configuration co of length r, where the value 

L will be determined by the following recurrent relations, namely: 

n 2 r( 1)2 2j 4rm (m 1)j o
jjo

2L 2j 12
w 2o j1 j 1

2 2

w
,r (2m 1) , wL ( r )w L22

(2m 1)r (2m 1)L L, L

 











  

  

 

To grow up the final configuration cf  of the specified length L of single 

z-automata, the functional algorithm Fa requires t=]3/2+1/2m[*L steps 

of the structure 1–CA*. 

Using the introduced concept of structures 1–CA* allows to more clearly 

imagine the very idea of a functional Fa–algorithm of growing, which 

can be implemented in the classical 1–CA too, however with essentially 
high costs. So, our idea of a functional algorithm is reduced to recurrent 

exponential increase in the growth time of the chain of z–automata of the 

1–CA*, using a principle of increasing the amplitudes of repeated cycles 
of passage of the same pairs of control pulses in the structure due to an 

exponential increase in the lengths of z–automata segments which define 

the duration of these cycles. A meaningful description of the essence of 

the implementation of such a functional algorithm Fa, which solves LGP 
in the 1–CA* structure, can be found, for example, in [113]. On the basis 

of the proposed idea, different modifications can be considered that make 

it possible to significantly improve the above result of the LGP solution 
[113,140-147,183]. However, this issue was beyond our attention. 

At the same time the growing time of z-automaton chains of the specified 
fantastic length does not exceed their double length and, when the value 

of m increases, than that significantly affects the length of the growing 

chain, asymptotically tending to the limit of t = ]3/2*L[. Obviously, that 
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the theoretical limit of the growing time of the chain of z–automata of L–

length in the structure 1–CA* is t = ]L/2[, but, due to the limited growth 
and the need to process this condition by a functional Fa–algorithm, this 

limit is unattainable. At the same time, modification of the Fa–algorithm 

used for obtaining the above–stated solution of LGP gives the chance to 
grow up a chain of z–automatic machines at the same initial prerequisites 

in time, asymptotically equal t = ]1/2 + 1/2m[*L, and with length equal to 

the following value, namely: 
r 14 3

L r (2m 1) 2m



    

Our analysis of functional algorithms [113,141] that solve LGP allows us 
to divide them into 2 large classes that are fundamentally different from 

each other, namely: 

(1) algorithms whose essence is to continuously maintain the growth of 

the figure until a control locking pulse (signal) is obtained; 

(2) algorithms whose essence is to pre–mark the contours of the grown 

figure and then fill it with some final F–symbols (placeholders). 

The functional algorithm underlying the first LGP solution belongs to the 
second class, while the time–optimal algorithm belongs to the first class. 

Apparently, for growing figures (configurations) of the maximal possible 

size, the functional algorithms of the second type are the most acceptable 

while for growing the figure in the minimal time – the first type. In our 
opinion, the first type of algorithms more adequately reflect the essence 

of growth processes in developmental biology, which is based on both 

genetic information of the zygote as well as the influence of the external 
development environment. The first algorithm used to solve LGP, based 

on the propagation in the modelling structure 1–CA* of control pulses, is 

complex enough and in the case of, in particular, any failure will be able 

to initiate uncontrolled growth of the figure, causing the so-called cancer 
process. Meanwhile, further complication of this functional algorithm Fa 

allows [113,141] to slightly improve the marginal sizes of configurations 

grown in the CA* models, and in this regard a rather interesting question 
arises: Are there functional algorithms using any other ideas and provide 

the best results for growing maximal size configurations, all other things 

being equal conditions? Finally, from the applied aspects of LGP, it is 
worth noting its usefulness for the tasks of investigating the information 

connection of intercellular interactions of developing cell systems, as 

well as for forming a number of considerations about the nature of the 

genetic code and the mechanisms of the emergence of various types of 
carcinogenesis. We analyzed this type of functional growing algorithms 

compared to the algorithms of growing artificial systems [113,140-147]. 
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CHAPTER 4: Certain Mathematical Problems 

TRG conducted research on purely mathematical topics in both pure and 

applied mathematics: algebra, analysis, differential equations, theory of 

optimal control, number theory, probability theory and statistics, theory 

of recursive functions and algorithms, dynamic programming, discrete 
mathematics, combinatorics, automata theory, etc. Specifically, a number 

of results were obtained in the mathematical theory of optimal processes, 

based on the so–called Pontryagin maximum principle, that concern the 
stability of certain optimal differential systems [151]; based on a special 

type of classical 2–CA models, a number of rather interesting non–trivial 

properties of the generalized arithmetic Pascal triangle and Fibonacci 
numbers are obtained [113]. S. Ulam [1] formulated the problem of the 

existence of a simple universal self–reproducing matrix system whose a 

positive solution would imply the existence of formal reproducible matrix 

systems. Meanwhile, in paper [152] we proved the absence of a universal 
reproducible matrix system for a sufficiently large rank. However, for the 

case of infinite matrices, the problem still remains open. A number of our 

other results of mathematical research can be found in report [141] and in 
books presented in [113]. Below we will present only a few of them. 

4.1. The H. Steinhaus combinatorial problem 

Polish mathematician H. Steinhaus more than 85 years ago formulated a 
rather interesting combinatorial problem called "pluses–minuses", whose 

essence in our terminology comes down to the following [113,141,148]. 

Let c(k) = p(1, 1)p(1, 2)p(1, 3) ... p(1, k) will be the first string of binary 

elements p(1, j){0, 1}; (j = 1..k). In addition, the values of k are selected 

only from the set M = {3 + 4t, 4 + 4t | t = {0,1,2,3, ...}. Then the elements 
of the j–th string of length (k – j+1) are obtained from the elements of the 

(j – 1)–th string of length (k – j + 2) according to a simple recurrent rule: 

p(j, i) = p(j–1, i) + p(j–1, i+1) + 1   (mod 2);           (i=1 .. k–j+1; j=2..k) 

It is easy to make sure, this construction results in a triangular figure T(k) 

consisting of N = k(k + 1)/2 characters {0,1}. Since N – even numbers for 

values kM, the following interesting question can be formulated: Is it 

possible for any permissible value kM to determine the figures T(k), 
that will consist of the same number m=k(k+1)/4 of symbols "0" and "1"? 

In the case of a positive answer, we will say that string c(k) is a solution 
to the Steinhaus problem (the term "S–problem" is later used for brevity) 

for a given integer k–value. 

A number of professional mathematicians and amateurs were engaged in 
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solving the S–problem, which made it possible to get interesting enough 

results. Meanwhile, its general decision remained open. And only on the 
basis of a number of results on classical structures 2–CA together with 

computer modelling, we managed to get not only a number of new quite 

interesting results, but also an exhaustive solution of the problem [149]. 
For further presentation, we will need a number of basic definitions. 

Definition 1. The solution S(k) of S–problem for each integer kM = 

{3+4t,4+4t | t=0,1,2,...} will be called a derivative [notation: D(k)] if it is 

represented in the form of concatenation of the form D(k) = S(k1)S(k2) 

S(k3)...S(kn) of solutions for kj < k values at ∑j kj = k   (j=1..n). Let S(k) 

be a set of all kinds of solutions of the S–problem for a certain value of 

k. It is easy to verify that S(3) = {000, 011, 110, 101} and S(4) = {1101, 

1011, 0011, 1100, 1010, 0101}; these two sets of solutions will be called 

basis. Derivative solution D(k) is called the basis one [notation: B(k)] if 

the following defining relations occur in D(k)–representation, namely: 

S(kj)S(3)∪S(4)    (j = 1..n). 

The sets of derivatives and basis solutions (along with their elements) of 

the S–problem for each value of k will be denoted respectively by D(k) 

and B(k). Note, the basic solutions are of particular interest in connection 
with the fact that they are formed from elementary basic solutions and to 

a certain extent illustrate one of the interesting examples of phenomenon 

of the self–complication of quantum character. 

To simulate the process of generating said figures T(k), a special type of 

classical 2–CAs structures has been defined. A detailed analysis of the 
dynamics of finite configurations in these structures, basing on studies of 

the deep properties of their local and global transition functions, made it 

possible to prove that for each permissible value k>2, the S–problem has 
positive S(k) solutions. Whereas using the corresponding classical 2–CA 

together with computer simulation, it was possible to obtain some rather 

interesting properties of the S–problem solutions detailing their structure. 
The overall result in this direction is as follows [113,141,149,183]. 

Let S(k), D(k) and B(k) be sets of all, derivatives and basis solutions of 

the S–problem, respectively, for a certain integer kM. Then, for each 
allowable integer k>2, the set S(k) is not empty, and for each allowable 

integer k>10, the following relation occurs, namely: #S(k) > #B(k), where 

#G is the cardinality of a set G. 

So, this result gives a complete solution to the S–problem. To research a 

number of quantitative characteristics of the problem solution we joint 

used the computer modeling and theoretical analysis of the corresponding 
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classical 2–CA, that allowed to obtain a number of interesting estimates 

for all types of solutions to the S–problem [113,141-144,183]. 

For an integer k{3+4t, 4+4t | t = 0,1,2,...} the following defining ratios 

take place, namely: 

{ }
[ ]; #

{ }

3t 2
k r(k)

3t

2 , if k 3 4t|t 1, 2,3, ...
#S(k) 2 for r(k) k / 2 B(k)

2 , if k 4 4t|t 1, 2,3, ...



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Similar results occur for derivatives D(k) solutions to the S–problem. 

Note that the S–problem can be generalized as follows. Instead of A from 

two symbols {0,1}, the alphabet A = {0,1,2,...,a–1} typical of CA-models 

is used, and elements of string c(k) are selected from alphabet A. While 
elements of the j–th string of length (k–j+1) are obtained from elements 

of the (j–1)–th string of length (k–j+2) according to the recurrent rule: 

p(j, i) = p(j–1, i) + p(j–1, i+1) + 1   (mod a);           (i=1 .. k–j+1; j=2..k) 

As a result, the triangular figure T(k) is generated from N = k(k + 1)/2a 
symbols from alphabet A. And since the values of N are integers for an 

infinite set of values k, than the following question arises: Is it possible 

for each valid k–value to define figures T(k) that will contain identical 
numbers of k(k+1)/2 occurrences of symbols from alphabet A? In such 

statement, the S–problem is called generalized. 

It is reasonable to assume that the generalized S–problem can receive a 

wider interpretation, namely: the neighborhood index X = {0,1,2,...,n–1} 

for it is assumed to be arbitrary. In this setting, the allowable integers k 
are selected from the set M* = {n + t(n–1) | t = 0,1,2,...}, while the stepped 

figures R(k) contain L = [(n–1)t2 + (3n–1)t + 2(n + 1)]/2 of each symbol 

from the alphabet A. Under the assumptions made, the general S-problem 
is reduced to the question of having for each permissible k–integer of a 

R(k)–figure containing an equal number of L/a occurrences of symbols 

from the alphabet A. A generalization of the methods of solving of the 
classical S–problem allows to formulate the following result [113,141]. 

For an arbitrary alphabet A = {0,1,2,...,a–1} and an acceptable value 

k≥2a the generalized S–problem has at least 2a solutions. The number 
of G(k) solutions for the generalized S–problem at alphabet A = {0,1,2} 

and admissible values k{2+3t, 3+3t | t=1,2,3,...} satisfies the inequality 

G(k) > 2k–1. For an integer kM*, alphabet A and neighbourhood index 

X = {0,1,2,...,n–1}, the general S–problem has at least 2k solutions. 

Note, that the above results related to the solution of the S–problem can 

also be generalized to cases of higher dimensions and recurrent rules of a 
more general form, demonstrating interesting enough examples of self–

complication and complex enough reproducibility [113,141,147,183]. 
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4.2. The S. Ulam problem from number theory 

A heuristic study of the growth problem already in the case of two and 

three dimensions shows the whole variety of growing figures, which is 

quite difficult to satisfactorily characterize by formal methods. In view of 

this, in order to simplify the research of this problem, S. Ulam tried to 
introduce the corresponding definitions in the one–dimensional case with 

the hope that certain of the basic properties of the so–called sequences of 

uniquely defined sums (SUDS) will help clarify the picture in the given 
direction [1]. However, not so much in terms of the formal problem of 

growth, but in connection with the number theory, this problem gained 

fame and attracted the attention of many researchers. The essence of this 
problem is quite simple and boils down to the following. 

On a set M = {1,2,3, ...} of positive integers simple binary operation ϕ is 

defined: x + y ⇒ z, where x, y, zM. The z elements form a set M*⊂M. 

The following restrictions are imposed on the given ϕ–operation: 

(1) starting with numbers a and b (a < b), all subsequent elements z = x + y 

are obtained as the sum of any two previous elements x, yM from the 
previously obtained sequence, but we do not include those sums that can 

be obtained in more than one way; 
(2) the numbers themselves do not add up and the most right element of 

the formed segment (a, b) of the SUDS must participate in addition. 

The numerical sequence thus obtained will be called SUDS(a, b). So, the 

first twelve elements of SUDS(1, 2) form the following natural numbers, 

namely: 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28. Twins in SUDS(a, b) will be 
called pairs of adjacent elements that differ in value by p = p(a, b). Below 

a set of pairs of twins we will simply denote T(p). For example, T(a + b) 

is a set of twin pairs of the form p(a, b) = a + b. The initial setting of the 
S. Ulam problem consists in determining the cardinality of the set T(2) 

for SUDS(1, 2), i.e. the pairs of adjacent elements of the set M* differing 

in value by 2. In this regard, S. Ulam hypothesized the infinity of the set 

T(2). We investigated this problem in a more general statement, for that 
we will need to introduce a number of additional definitions. 

In addition to the SUDS(a, b) sequence, we will consider the sequence of 

type SUDS1(a, b), which differs from the first only in that we not require 

mandatory participation in the binary ϕ–operation of the right extreme 

element of the already formed segment (a, b) of SUDS. Note, that both of 
these SUDS variants along with self–contained interest in number theory 

have a number of interesting enough biological interpretations related to 

the growth problem formalized for the simplest one–dimensional case. In 
relation to the problem we studied the next questions of SUDS behaviour: 
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♦ definition of partial SUDS densities starting from the set element 

♦ degree of growth of SUDS element values starting from the set element 
♦ changing partial densities of twin pairs relative to the entire SUDS 

♦ changing the distance between the nearest pairs of twins in SUDS 

♦ estimating the number of pairs of twins in a set SUDS segment. 

At the same time, all listed questions relate to both the sequence of the 

form SUDS(a, b) and SUDS1(a, b) for arbitrary integers positive a and b. 

Above all, consider the more complex case of the sequence SUDS1(a, b). 

Unfortunately, the algorithm for forming the k–th element of the set M* 

(excluding the natural generation algorithm underlying such sequence 
definition) has not yet been discovered. Meanwhile, it has been proved 

that any SUDS1(a, b) has an infinite set of twin pairs of at least one of 

the following types, namely T(a), T(b) or T(a + b). It is shown that if ak is 

the k–th element of SUDS1(a, b), then the k–th element of the sequence 

SUDS1(da, db) will be the number dak. This property is also valid for the 

SUDS(a, b) type sequences. A completely different picture occurs in the 
case of SUDS(a, b) sequences, where we were able to obtain practically 

comprehensive solutions for a whole series of variants of the generalized 

S. Ulam problem. For example, SUDS(1, b) for b ≥ 5 has infinite sets T(b) 

and T(b + 1) of twin pairs, and its elements ak are calculated from simple 

recurrent formulas, namely: 

k

b k 2 , if k 3, 4, ...,b 2
4b 2 , if k = b + 3
(k b +1)b + (k b 3) / 2 2 , otherwise

a
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
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Density of this sequence relative to the set N is ρ = 2/(2b + 1). SUDS(a, b) 
at a > 1 and b/a – [b/a] > 0 has an infinite set T(a) of pairs of twins, and its 

density with respect to the set N is a value ρ = 1/a. The elements of this 

sequence, starting with k ≥ 3, are calculated using the simple recurrent 

formula ak = b + (k–2)a. In works [113,141,146,147], a number of other 

rather interesting examples of SUDS(a,b) can be found for which explicit 

functional relationships of the form ak=F(k,a,b) can be established along 

with clarifying of certain other interesting behavioural properties of this 

type of sequences. Finally, the following result has been proved [141]: 

SUDS(1, 2) has an infinite set T(2) of twin pairs and its ultimate density 

relative to the set N is determined by the ratio: 
k 2
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This made it possible to get a complete solution to the classical problem 

of S. Ulam. For the study of SUDS of various types, a special program 

was developed in the language PL/1 in OS/360, which made it possible 
additionally to obtain a lot of very interesting empirical results [113]. 
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4.3. An algebraic system for polynomial representation of the 

a–valued logical functions 

The research of a number of classes of discrete parallel dynamic systems 

(DPDS) is quite closely related to the study of the properties of a–valued 
logical functions (a–VLP). Among the various approaches to the study of 

such functions, an algebraic approach occupies a special place, when any 

a–VLP can be represented by a polynomial (mod a) of maximal degree 

n(a-1) over the field A, and vice versa, where a-VLP – a map R: An → A. 

Meanwhile, in the case of composite number a far from all a–VLP can 

be represented in such a polynomial form, or more precisely "almost all" 
functions do not have such a polynomial representation. And since the 

alphabet A in DPDS can be arbitrary, the problem arises of extending an 

algebraic method of study to the general case of the A–alphabet. In this 
regard, an interesting and important problem arises from many points of 

view: Is it possible to define an algebraic system (AS) that would allow a 

polynomial representation of a–VLP in the A–alphabet with a composite 

a–number as in the case of a prime a–number? In this regard, we have 
defined one type of AS, in which "almost all" a–VLP have a polynomial 

representation for the case of the composite a–module [141,150]. Such 

AS is defined as follows. A finite alphabet A = {0,1,2,...,a–1} is selected 
and on it the usual binary addition operation (mod a) is defined. At the 

same time on A–alphabet, a binary # multiplication operation is defined 

according to the following multiplication table. It is easy to make sure, 

the # multiplication operation on set Aa\{0} forms a finite cyclic group 

A# of degree (a – 1). Relatively to the AS defined thus, the main result is: 

There is an algebraic system <Aa; +; #> in which "almost every" a-VLP 

defined in the A–alphabet (a – a composite number) can be represented 

in the form of a polynomial P#(n) (mod a), where: 

# 0 1 2 3 4 5 . . a-6 a-5 a-4 a-3 a-2 a-1 

0 0 0 0 0 0 0 . . 0 0 0 0 0 0 

1 0 1 2 3 4 5 . . a-4 a-3 a-2 a-1 0 a-1 

2 0 2 3 4 5 6 . . a-3 a-2 a-1 0 a-1 1 

3 0 3 4 5 6 7 . . a-2 a-1 0 a-1 1 2 

4 0 4 5 6 7 8 . . a-1 0 a-1 1 2 3 

5 0 5 6 7 8 9 . . 0 a-1 1 2 3 4 

6 0 6 7 8 9 10 . . a-1 1 2 3 4 5 

.. .. .. .. .. .. .. . . .. .. .. .. .. .. 

a-3 0 a-3 a-2 a-1 1 2 . . a-9 a-8 a-7 a-6 a-5 a-4 

a-2 0 a-2 a-1 1 2 3 . . a-8 a-7 a-6 a-5 a-4 a-3 

a-1 0 a-1 1 2 3 4 . . a-7 a-6 a-5 a-4 a-3 a-2 
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(+) – conventional addition operation (mod a) 

(#) – multiplication operation defined according to the above table 
 na 1 d d dj j jn1 2

nj 1 2
j 1

#P C # X # X # ...X (mod a) a polynom




 
 

which is not containing dyadic expressions of the following form: 
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This result played a very important role in DPDS studies for cases of the 

alphabet A={0,1,2,...,a–1} (a – a composite integer) and made it possible 

to obtain a number of very interesting results concerning the problems of 
cellular automata, some of which are discussed below. At the same time, 

the given result gives a completely satisfactory analytical representation 

of a–VLP in the case of a composite a–module. For example, even such 
a very simple logical function as: 

1

0 , if x 0
R (x) 2 , if x 1

1 , otherwise




 


 

which is defined in the alphabet A6, can`t be represented by a polynomial 

(mod 6), whereas in AS <A6; +; #> its representation has the following 

simple form: R1(x) = P#(1) = x2 + x3 (mod 6). A number of other rather 

interesting examples of this nature, as well as a comparative analysis of 
the algebraic system determined above along with a classical algebraic 

system of the form <Aa; +; x>, in which operations (+), (x) are ordinary 

binary operations of addition and multiplication by (mod a), respectively, 
can be found in our works [113,141-144,183]. 

Moreover, based on the algebraic system introduced above, an interesting 

enough type of classical cellular automata with a sufficiently high degree 

of reproducibility of finite configurations can be determined. To this end, 

for 1-dimension classical cellular automaton, the local transition function 
is defined as follows: 

1
n1 2 1 k

n
1

n1 2 1 k
k 1

1
1 k

x x ...x x 0 , if ( k)(x 0)

x x ...x x # (x ), otherwise

x , if x 0
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1, else
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where # – an operation is determined according to the multiplication table 
presented above. It is shown [141], the considered class of 1–dimensional 

cellular automata is characterized by the presence for them of property of 

essential, but not universal reproducibility of finite configurations. 
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CHAPTER 5: Cellular Automata (Homogeneous Structures) 

The closing chapter presents the main fields of research of the Tallinn 

Research Group (TRG) on the problems of cellular automata (CAs) and 

the results obtained in this direction. It was CAs problems underpinned 

the formation of a group of CAs interested researchers as a TRG in 1970 
after familiarization in Leningrad (now Saint–Petersburg) in 1969 with a 

Russian translation of the excellent collection [1], that contained articles 

by E.F. Moore, S. Ulam and J. Myhill that stimulated our research on the 
CA-problematics. And, if in the first few years our main focus was on this 

area of research, then in the future this area was periodically (sometimes 

for a fairly long time) overlapped with other scientific and technical areas 
considered in previous chapters of the book. Meanwhile, the CAs issues, 

including its applications, primarily in computer science, mathematical 

and developmental biology, have been a major outline of TRG activity. 

At the same time, during the period of activity in certain other areas, for 
example, computer mathematics systems, we in parallel done computer 

modelling of a number of tasks of CA-problematics (along with computer 

research of purely theoretical problems), as well as problems somehow 
that are related to this problematics (in particular, problems of biological 

nature). Some parallel algorithms describing certain processes in the CAs 

environment were used by us in the development of high–performance 
parallel architecture computing systems [10,11,113,141-144,175,183]. 

However, not all of our activities made it possible to actively conduct a 
research in the CAs problematics; moreover, we had significant intervals 

during which we did not conduct any research in the CA-problematics. As 

a whole, such intervals fall on the period of the collapse of the USSR as a 

single state. In the same periods when work was carried out that was not 
related to CAs problematics, attempts were made to find common ground 

with the current work. In a number of cases, such approach has yielded 

positive results, allowing to study into certain CAs problems in parallel. 
At the same time, such approach made it possible to obtain, sometimes, 

non–standard solutions for purely applied problems, far, at first glance, 

from the CAs problematics [113,141]. 

As part of a brief historical survey, we will present the main stages of the 

formation of the Cellular Automata theory, including the results obtained 
by the TRG (1969 – 1998), and subsequently by the Baltic Branch of the 

International Academy of Noosphere (1999 – 2021). Note, the survey is 

largely based on our research experience in this field since 1969, i.e. at 
the dawn of this line of study in the USSR and Estonia. References cover 

mainly book publications, while numerous articles are available in [154]. 
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5.1. Basic concepts of classical cellular automata 

As the main object of research, the so–called classical cellular automata 

(CAs) are considered, which in all their generality are highly formalized 

models of certain abstract "Universes", developing according to rather 

simple rules and consisting of simple enough identical elements. CAs of 
this type develop according to local (and everywhere the same) rules for 

interaction of the elements forming them. In this context we can consider 

CA as a certain analogue of the physical concept "field". The CA space is 
a regular lattice whose cell represents a certain identical element (a finite 

automaton) that receives a finite number of states. At that, the history of 

development of such CA is set on a discrete time scale (t = 0,1,2,3, ...) by 
a finite set of commands changing the state of any elementary automaton 

at time t > 0 depending on state of oneself and states of its neighbouring 

automata at the previous time (t–1). Say that the function acting on each 

elementary automaton in its neighbourhood is called the local transition 
function (LTF), whereas its action on the entire CA space determines the 

so–called global transition function (GTF). Change of configuration for 

such a CA model under the action of GTF determines the dynamics of its 
functioning over time; this aspect plays a major role in the researches of 

behavioural (dynamic) CAs properties, including their appendices. 

The CAs can well be considered as the theoretical basis of some artificial 

systems of parallel information processing or as some kind of acceptable 

presentation environment for conceptual as well as practical models of 
spatially distributed dynamical systems. In addition, from a logical point 

of view, the CAs models themselves are infinite abstract automata with a 

specific internal structure that determines a number of rather important 

properties that quite successfully allow them to be used as a new fairly 
promising environment for modelling various discrete processes using 

the maximal parallelization mode. In general, CA–problematics can be 

considered as a structural–dynamic component of the theory of infinite 
automata with a certain specific internal organization that is qualitative in 

nature along with its important enough applied aspects. In general, our 

point of view on the place of CA–problematics in the modern knowledge 
system is presented in the last section of this chapter. 

Here we will present the basic concepts, definitions and designations that 
relate to the concept of classical CA–models and used throughout further 

consideration. A detailed discussion of the basic concepts of CA–models 

along with the issues related to them will allow a deeper understanding 
of the foundations of this field of the general theory of infinite abstract 

automata. Above all, note that the consideration of the material is based 

on the so–called classical concept of d–dimensional cellular automata  
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(d–CA, d≥1), regarding which a number of basic definitions and concepts 

are introduced and some related results, including an important question 
of the degree of generality of the classical concept too. The definition of 

an arbitrary classical d–CA (d ≥ 1) is axiomatically introduced as follows 

(henceforth, we will use the signage CA for both the individual cellular 
automaton and their set; the meaning of this designation easily follows 

from the context and does not cause any misunderstandings). 

The classical d–dimensional cellular automaton (d–CA; d ≥1) is defined 

as an ordered set of the following four components, namely: 

d–CA ≡ <Zd, A, τ(n), X> 

where A is a finite non–empty set (a states alphabet), and this is the set 

of states that each elementary automaton in the d–CA can take. 

The states alphabet A includes a separate element which is called the rest 
state (indicated by the symbol «0»; in addition, for convenience, in some 

cases, the symbol «0» is replaced by the symbol « »). The essence of the 

special state will be clarified a bit later. Without disturbing commonality, 

we will use the alphabet A = {0,1,2,..., p–1}, which contains p elements – 
integers from 0 to p–1, as its states. Elements of alphabet A, including 

the rest state, allow different interpretations in a rather wide range [155]. 

The component Zd is a set of all d–dimensional tuples of the coordinates 

of all points in the Euclidean space Zd, i.e. Zd is an integer lattice in Zd, it 
serves to spatially identify individual automata of the d–CAs. It is shown 

[113] that such lattice does not give anything fundamentally new for the 
fundamental properties of the dynamics of configurations (both infinite 

and finite) in classical d–CAs, so for study purposes it is enough to limit 

itself the integer lattice Zd. The lattice Zd (d≥1) defines the uniform space 

of d–CA in which they operate. So, Zd is a set of all d–dimensional tuples 

of integers that is used to name d–CA cells and is called a space in which 
all functioning elementary automata are identical. 

The element in the Zd lattice can be considered as the name or address of 

a particular elementary automaton which occupies this position in the Zd 
space. At the same time, it is often convenient to identify an j–automaton 

located in an j–cell with the j–cell itself. In many applied aspects of d-CA 

(d≥1) their geometry plays a rather important role (therefore, the question 

of lattice geometry takes on special importance in the structural theory, 
when the properties of d–CAs are considered depending on their internal 

organization), but in our CAs research this question was considered quite 

rarely, and then at a purely applied level [113,141,144,175,185]. 

The dimension d of the CA–models space plays a fairly significant role, 
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differentiating the entire set of the models into two different subsets: 1–

dimensional (d = 1) and d–dimensional models (d ≥ 2). Transition from a 
1–dimensional to 2–dimensional case not only dramatically changes the 

dynamics of CAs models, which is due to an increase in dimension, but 

also increases the complexity of most of the problems solved on them. In 
particular, it is shown [144] that certain dynamics problems for classical 

1–CA and d–CA (d ≥ 2) are solvable and unsolvable, respectively. In most 

cases, the proof of intractability faces significant difficulties that can be 

fully attributed to the CA–problematics as a whole. 

Class of 1–CAs represent a special subclass of all d–CAs (d ≥ 1), studied 
quite efficiently. If, in terms of modeling itself, the 1–CA, in our opinion, 

have no special prospects, nevertheless they are of certain interest as an 

independent mathematical object. At the same time, using the example of 

1–CAs, it is much easier to master the concept of classic CA–models. So, 
a lot of types of 1–CA were most intensively researched from theoretical 

point of view; in addition the vast majority of both theoretical works and 

their computer modelling for the purpose of research of certain dynamic 
properties were devoted to this class of CA–models [164]. A copy of the 

Moore automaton with the alphabet of states A is placed in each cell of 

the lattice Zd (the output of such automaton is determined by its current 
state). The state of such automaton at time t > 0 is a function of its inputs 

at time (t–1); at that, output signal of automaton at time t > 0 is identical 

to its internal state. Then each cell of lattice Zd will determine the name 
(coordinate) of the elementary automaton located at such point. For the 

sake of convenience, we will identify the points of the Zd lattice with the 
elementary automata located in them. So, the two terms «automaton z» 

and «automaton with a coordinate zZd» we will assume identical. 

We further consider that component X, called the d–CA neighbourhood 

index, is an ordered set of n elements of the Zd lattice, which serves to 
determine the automata adjacent to each elementary automaton of the d–

CA, that is, those automata with which the given automaton is directly 
connected by information channels. So, in the simplest example 2–CA 

we quite can imagine a lattice Z2 in the form of cell paper, where each 

cell contains a copy of a certain Moore automaton. Then Xn={(0,0), (0,1), 

(1,0), (0,-1), (-1,0)} and Xm = {(i, j)} (i, j{0,1,-1}) are called Neumann 
and Moore neighbourhood indices, respectively. These neighbourhood 

indices X have long become classical and are widely used in research of 

both theoretical and applied aspects of d–CAs, while the neighbourhood 

patterns (NP) defined by them have transparent geometric presentation. 
In general, the neighbourhood index can determine any finite network of 

elementary automata of the Zd lattice [3]. Typically, CA neighbourhood 
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pattern are arbitrary; they take the form defined only by the application 

aspects of d–CA models mainly and can be a wide variety of. 

Despite the versatility of the simplest neighbourhood indices (any classic 

d–CA is modelled with a d–CA, but with an elementary neighbourhood 
index), more complex neighbourhood indices are used for a number of 

applications and theoretical research. This approach in many practically 

important cases makes it possible to significantly simplify the process of 
embedding specific processes, objects, phenomena and algorithms into 

classical d–CA. At the same time, this approach is very effectively used 

for theoretical studies of d–CAs (d ≥ 1), in particular, in their computer 
research. Thus, the neighbourhood index of d–CAs (d ≥ 1) is a n–tuple of 

different d–tuples of integers; it is used to determine the neighbours of a 

cell, that is, those cells from which the cell directly receives information. 

Then n neighbours of a certain cell z are cells z + αo, z + α1, ..., z + αn–1, 

where X = {αo, α1, ..., αn–1}. If the index X contains a point 0n = {0, 0, 0, 

0, ..., 0}, then each elementary automaton will be in its own NP. Without 

limiting commonality, we will generally assume that index X contains a 

point 0n that defines the central automaton of NP. In general, it has been 
proved that the dynamics of d-CAs (d ≥ 1) do not depend on the choice of 

an automaton of the NP as the central one. Among all neighbourhood 

patterns, coherent and incoherent are distinguished; generally speaking, 
this parameter significantly affects the dynamics of d–CA. NP is called 

coherent if the area occupied by it is coherent in the topological sense; 

otherwise, NP is called incoherent. A detailed analysis of both types of 

NP in the context of their effect on the dynamics of CA–models can be 
found in [141]. Next, as a rule, we will deal with coherent NP, bearing in 

mind that an arbitrary incoherent NP can always be replaced by a certain 

equivalent coherent NP of the same maximum size, using the appropriate 
insignificant elements in the NP. 

So, the first 3 components of arbitrary d–CA (d ≥ 1): the states alphabet 

A, space Zd and neighbourhood index X form a so–called homogeneous 

space. Homogeneous space is a static part of d–CAs (d ≥ 1) that describes 
the physical structure of d–CA, but it does not define the interactions that 

will take place between elementary automata in Zd, i.e., strictly speaking, 

the above 3 components do not determine the dynamics of CA–models. 

To determine and study the functioning (dynamics) of d–CAs (d ≥ 1), it is 
necessary to have means to describe the current state of the entire space 

Zd at any time t > 0. The state of the entire space defines a configuration 

(CF) of Zd, that is, simply the complete set of current states of each unit 

automaton in Zd. So, a configuration is an arbitrary mapping CF: Zd →A; 
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let C(A, d) denote the set of all configurations with respect to Zd and A, 

i.e. C(A, d) = {CF|CF: Zd → A}. The special symbol « d» denotes the 

completely zero CF; d: Zd → 0, i.e. when all elementary automata in Zd 
are at rest state «0». By identifying the states {«0», « »}, we will use the 

second of them to denote infinite areas of space Zd filled with automata 
only in the rest state «0». The state «0» has numerous and quite natural 

interpretations from an applied standpoint. It must be kept in mind that 

all results given below concerning the rest state «0» are fair also for the 

general case of a rest state hA, i.e. for all classical models d–CA (d ≥ 1) 

(moreover, we will understand both a separate configuration, and their 
set in case of lack of ambiguity as an abbreviation «CF»). 

The set of all configurations C(A,d) is heterogeneous relative to the d-CA 

dynamics due to the presence of the rest state «0» in it, so we define two 

of its main subsets: the finite CF C(A, d, ) and the infinite CF C(A,d,∞). 
The CF of classical d–CA is called finite if it contains a finite number of 

elementary automata in states other than the rest state «0», otherwise it is 

called infinite. Obviously, the following relations C(A,d,)∩C(A,d,∞) =  

and C(A,d,)∪C(A,d,∞) = C(A,d) ( is an empty set) take place, whereas 

the d dimension of the configurations is determined by the dimension of 

classical d–CA (d ≥ 1). Taking into account the specifics of classical d–

CAs, which is largely due to the presence of the rest state «0», along with 

a number of other rather important reasons, we will henceforth attribute 

the completely zero configuration co to the set C(A, d, ). This approach 

yields many very interesting results regarding the dynamics of the classic 
d-CA (d ≥ 1). This applies in particular to the problems of reversibility and 

nonconstructability discussed below. A sufficiently detailed discussion of 

the above concepts and definitions can be found, for example, in [161]. 

Operating of d–CA (d ≥ 1) occurs at discrete time t = 0, 1, 2, 3, ... and is 

determined by the local transition function (LTF) σ(n), that sets the state 
of each elementary automaton at the current time t > 0 based on the states 

of its neighbouring automata (according to the neighbourhood index X) 

at the previous moment (t–1). In other words, the LTF σ(n) is an arbitrary 

mapping σ(n): An → A; below, the following main designations will be 
used for LTF, namely: 

 σ(n)(a1, a2, …, an 
) = a1*;       aj, a1*A     (j = 1..n)                 (1) 

 a1 a2 … an ⇒ a1*  – a set of parallel substitutions                  (2) 

where aj is the state of a z–automaton of the d–CA and all its neighbors 

according to the neighborhood index X = {x1, x2, …, xn} at the moment 

(t–1) and a1* is the state of the z–automaton at the next moment t > 0. A 
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detailed discussion of the arbitrariness of choosing of central automaton 

of NP can be found in [141]. Whereas in each particular case, as a rule, 
for the NP the most suitable center automaton is selected. 

The representation of a LTF by formula (1) is most convenient in many 
respects. In many interesting cases, the approach is useful, and quite real, 

but, in some cases the use of LTF in the form of parallel substitutions (2) 

is required and is the only possible. The set of parallel substitutions (2) 
defines a certain program (parallel algorithm) for the functioning of CA 

models; parallel replacements (2) represent a low–level parallel language 

of programming in the CA–environment. The formula representation of 

LTF σ(n) is particularly preferred for the computer implementation of CA 

while parallel substitutions are indispensable in the programming step of 

a number of specific CA–models. Questions of the LTF representation 
are discussed in sufficient detail in [113,141-144,156-161,182-196]. 

Basically, we consider d–CA models whose LTF σ(n) satisfy the defining 

condition σ(n)(0,0, ..., 0,0) = 0, i.e. models with limitation of information 

transfer rate in them (an analogue of the final speed of light according to 
the modern physical point of view). The given assumption plays a rather 

significant role in studies of the dynamic properties of d–CAs (d ≥ 1) and 

well meets the requirements of using models as the basis for modeling of 
parallel dynamic systems of various types and nature. This condition not 

only introduces a limitation on the speed of information propagation in 

CA–models, but also determines the space (a certain formal vacuum) in 

which the dynamics of the development of the studied discrete objects, 
processes and phenomena occurs. At the same time, an arbitrary element 

of the alphabet A of the CA–models can be selected as a resting state, but 

for a number of reasons we use element {«0»,« »} as the most familiar 
and acceptable. CA models satisfying the above defining condition will 

be called stable, otherwise unstable. In the study of d–CA (d ≥ 1) models 

as independent mathematical objects, unstable models are also of certain 

interest. At the same time, unstable CAs may be of interest from the point 
of view of studying models in them, which are based on the concept of 

instantaneous transmission of information on arbitrary distances. Using 

of unstable CA-models are not known to us, but the work in this direction 
seems quite interesting. We did not seriously consider this issue. 

Thus, the dynamics of a classical d–CA (d ≥ 1) are fully defined in terms 
of LTF, i.e., local interactions of the neighborhood pattern automata of 

elementary z–automata, whereas LTF σ(n) itself is a typical example of a 
local algorithm that functions in highly parallel manner, based on the 

states configuration of the local neighborhood elementary automata, that 

is determined by the neighborhood index X of the current z–automata of 
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Zd of the classical d–CA. The simultaneous application of the LTF to NP 

of each z–automaton of the entire lattice Zd defines the global transition 

function τ(n) (GTF), that converts the current CF cC(A, d) of the lattice 

Zd into a subsequent CF cτ(n)C(A, d). Formally, the definition of the 

configuration cτ(n) can be represented as follows. Let C(A, d) be the set 

of configurations with respect to the lattice Zd and alphabet A, and s[z] 

denotes the current state of elementary z–automaton; then, formally GTF 

τ(n) with a neighborhood index X = {x1, x2, …, xn} is determined by the 

following relationship, namely: 

cτ(n) = c*  (zZd)(s*[z] = σ(n)(s[z + x1], s[z + x2], ..., s[z + xn])) 

From this definition, it directly follows that each LTF σ(n) determines a 

single GTF τ(n), and GTF τ(n) can`t be determined by two different LTF 

σ(n). In other words, there is a one-to-one correspondence between the set 

of all GTF τ(n) and the set of all LTF σ(n) for the given states alphabet A, 

dimension d of the lattice Zd, and neighborhood index X. So, we can talk 

about GTF τ(n), determined by LTF σ(n), and vice versa. It is proved that 
an arbitrary GTF in classical CA–model is primitively recursive function 

[141]. This result determines not only the place of GTF τ in hierarchy of 

all recursive functions, but together with other components determines 
simplicity of mathematical objects, like cellular automata d–CA (d ≥ 1). 

Meanwhile, such simple CA–models allow a rather complex dynamics of 

finite and infinite configurations, including universal computability. 

We can now define the fourth component of d–CAs (d ≥ 1). For A, Zd and 
X, the set of valid transforms T is any non–empty subset of the complete 

set of all GTF τ(n) that are determined by three parameters A, Zd and X. 

Besides, if set T contains one global transition function τ(n), then object 

d–CA ≡ <Zd, A, τ(n), X> is called monogenic or classical d–CA (d ≥ 1). At 

that, the operation of a classic d–CA (d ≥ 1) is especially simple: if c = co 

is an initial configuration of the homogeneous space Zd at time t = 0 then 

configuration of the space Zd at time t = m is c* = coτ(n)m – the result of 

m–fold application of the global transition function τ(n) to configuration 

co of the homogeneous space Zd of the CA–model. 

Let ξ = <co>[τ(n)] designates a sequence of configurations generated by 

some GTF τ(n) from initial CF co. Then for finite CF coC(A, d, φ) the 

sequence ξ represents the co configuration history in some classical d-CA 

(d ≥ 1) playing the main role in researches of dynamic properties of the 

classical CA–models. Dynamics refers to the operation of a d–CA (d ≥ 1) 
of any type, which consists in changing over time the CF of the d–CA as 
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a function of its initial configuration and the LTF (GTF). So, dynamics 

of d–CA ≡ <Zd, A, τ(n), X> {the sequence of configurations <co>[τ(n)]; the 

history of development of objects immersed in the CA–model} is defined 

uniquely by the above basic five components d, Zd, A, X and τ(n) {σ(n)}. 

Configuration c–1C(A,d) is the immediate predecessor for CF cC(A,d) 

if c–1τ(n) = c. Some configuration cC(A, d) may have several immediate 
predecessors, their infinite number, or have no predecessors at all. At the 

same time, the immediate predecessors for block, finite and infinite CF in 

classical d–CA (d ≥ 1) are quite naturally defined in the obvious way [3]. 

In general, informally a block configuration refers to the configuration of 

the finite block of lattice Zd, the infinite configuration contains an infinite 

number of elementary automata in states other than the rest state, finally 

the finite configuration is defined as a completely zero configuration of 

lattice Zd with a block configuration immersed in it. 

The task of actually determination predecessors for CA-models is already 

laborious already for the case 1–CAs. Below, we will deal mainly with 

block and finite configurations, since the case of infinite CF falls out of 
the scope of our attention, because it is possible to actually consider this 

type of CF, mainly, if they have a certain clear foreseeable structure, 

otherwise, as a rule, they have unpredictable dynamics; even the initial 

CF must be representable, for example, periodic in one aspect or another. 
A lot of software tools have been created for computer analysis of the 

existence of predecessors for block configurations [42]. In particular, we 

programmed tools for this purpose in Mathematica and Maple systems 
[60,62,64,65]. So, for the classical 1–CA models, this problem is solved 

using Mathematica procedure [42], the call of which Predecessors[c, f, n] 

returns the list of predecessors for a block configuration c relative to LTF 
f, given by the list of parallel substitutions, to the depth n; if block CF c 

has no predecessors, the procedure call returns the empty list with output 

of the corresponding message. At the same time, this procedure turned 

out to be a fairly convenient tool in computer research of reproducibility 
of finite block configurations in classical one-dimensional CA–models. It 

is easy to make sure that despite the simplicity of mathematical objects 

such as classical CA–models, their dynamics are quite complex, and its 
research involves, in general, significant efforts, and in a number of cases 

includes the use of non–traditional approaches. For this reason, there are 

relatively few results obtained by theoretical methods in this direction, 
while a quite significant part of them were obtained through an empirical 

approach, including computer modeling [3,113,117,141-144,156-161]. 

Thus, the concept of classical d–CAs intuitively seems to us quite simple, 

in connection with which the question arises regarding its degree of the 
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generality, that is, how widely such a concept allows extensions that do 

not exceed the scope of any studied phenomenon or the limits of some 
equivalence criterion (some kind of stability property of the concept). A 

rather detailed analysis of a number of extensions of the classical d–CAs 

concept regarding its dynamic properties showed that, despite a rather 
strict equivalence criteria for the dynamics of two d–CA models (based 

on a comparative analysis), the classical concept of d–CAs (d ≥ 1) has a 

sufficient degree of commonality, which allows us to consider it as one 

of the basis, determining the CA-concept in its entirety. Having evaluated 
only generating capabilities of classical d–CAs (d ≥ 1), we have proved 

that a number of extensions of the classical concept of CA show that the 

concept of classical d–CAs has a quite sufficient degree of commonality 
with respect to the relatively narrow concept of equivalence of two d–CA 

models [141-144]. It follows from the definition of classical d–CA (d ≥ 1) 

that these objects represent formal parallel algorithms for processing of 

finite configurations from the set C(A, d, ) by means of GTF, which can 

be considered as functions everywhere defined on the set C(A, d, ). Of 

the aforesaid follows that the concept of classical d–CA ≡ <Zd, A, τ(n), X> 
possesses a quite acceptable degree of community for many important 

applications (despite all the simplicity); is of considerable interest as an 

independent mathematical object, which is a very important component 
of a number of theoretical and applied models of parallel processing of 

information and calculations, including modelling of various natures. 

Thus, if the three components Zd, A and X of the cellular automata d–CAs 

(d ≥ 1) are sufficiently simple and transparent, then GTF τ(n) is, as noted 
above, a primitive–recursive function. Therefore, simple objects such as 

classical d–CAs have a sufficient degree of commonality and sufficiently 

complex dynamics to simulate a sufficiently extensive class of objects, 

processes and phenomena that occur in many fields. At the same time, 
these objects are of undeniable interest in study as an independent formal 

model of parallel processing and calculations. Meanwhile, within the 

framework of classical d-CA (d ≥ 1), their special subclasses with specific 
characteristics such as CAs with refractory, memory and some others are 

chosen, which allow to more efficiently model a lot of fairly interesting 

objects and processes. We defined certain types of CAs, which, however, 
were studied by us significantly less actively than classical CA–models. 

For today, a number of extensions and generalizations of classical CAs 

models are used with varying degrees of intensity. However, not every 

extension of the classical concept of d–CAs models leaves us within the 
chosen equivalence criteria. According to the mentioned extensions of 

the CA–model, a number of quite interesting results were obtained. Some 

of such CA types are discussed in detail in [3], other interesting types can 
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be found in bibliographies [10,11,113,141-144,156-161,175,182-196]. 

The main object of our study within the framework of CA–problematics 

were mainly classical cellular automata and their behavioural–equivalent 

modifications, for example, automata with refractory (hereinafter we will 
call this group simply "cellular automata – CA"). Meanwhile, in general, 

the CA–concept includes many types of automata (polygenic, stochastic, 

non–deterministic, and others) and in a number of cases we have studied 
or used some of these types in modelling. This applied primarily to the 

applied aspects of CAs problems, for example, in mathematical biology. 

Meanwhile, the complexity and diversity of the real world do not fit at all 

into the Procrustean bed of the concept of classical CA–models without 

any serious restrictions that affect the very attractiveness of its simplicity 
in its original concept. In our opinion, for today cellular automata are of 

undeniable interest in two main natural–scientific fields, namely: 

(1) The modeling environment and the embending in it of a wide variety 

of processes, objects and phenomena (especially those that are difficult 

or impossible to describe by other means, in particular, based on partial 
differential equations); that is, today the largest number of researches 

has been made in this direction and rather interesting results have been 

obtained for today; 

(2) As an independent mathematical object of research (highly parallel 
dynamic discrete systems; highly parallel computers similar to the Post, 

Markov systems and Turing machines, etc. for sequential calculations; 

text processing systems with highly parallel substitution rules, etc.). 

In this section, we have informally introduced the concept of classical 

cellular automata (CAs) and related concepts, thereby defining the main 
object of our research. Purpose of defining this object is to introduce in 

CA-problematics of the reader, above all, who is previously little familiar 

or completely unfamiliar with it. A detailed analysis of the definitions 
and concepts entered is not given here, however the interested reader can 

familiarize it, for example, in [156-161]. Naturally, the definitions and 

concepts introduced do not cover all CA-problematics and as the material 

is presented, other necessary concepts, definitions and designations will 
be introduced. Consideration of the presented material is conducted at an 

informal, substantive level, while their rigorous consideration is available 

from the sources cited. This approach is due to the fact that our goal is to 
informally represent our activity in CAs issues, and not in strict evidence 

of results obtained by us. This setting method is more like a surwey that, 

in our opinion, allows to delve more into the proposed problem without 

complicating it with evidence, at times, quite voluminous and requiring 
additional information from certain other subject fields. 
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5.2. The nonсonstructability problem in classical cellular automata 

By the terms nonconstruction configuration (NCF) & nonconstructability 
we, as a rule, mean block configurations such as "Eden Garden" and the 

presence in d–CA (d ≥ 1) of such configurations, respectively; the concept 

of nonconstructability defines one of the fundamental characteristics of 
d–CA, consisting in the presence of configurations for them that can`t be 

generated at the moment t > 0 from an arbitrary CF at the initial moment 

t = 0. Meanwhile, the nonconstructability problem has a slightly broader 

understanding, which can generally be characterized as follows. 

First of all, regarding the classical d–CAs (d ≥ 1), we are dealing with two 

sets of essentially different configurations: finite configurations C(A,d,) 

and infinite C(A,d,∞); collectively, these sets constitute the set C(A, d) of 
all configurations. The conventional concept of nonconstructability is 

directly related to the impossibility of generating from any configuration 

cC(A,d) by GTF of a classic d–CA (d ≥ 1) of a configuration containing 
a certain block configuration. The fundamental difference between finite 

and infinite configurations in the case of classical d–CAs (d ≥ 1) allows to 
quite naturally differentiate this concept of nonconstructability, which 

provides a more detailed study of the dynamics of classical CA–models 

along with a number of results that are rather fundamental. In particular, 
along with nonconstructible block configurations, it is quite appropriate 

to study the nonconstructability of finite configurations related to both 

the set C(A, d) in general and the subset C(A, d, ). This approach allows 
natural introduction of two new concepts of nonconstructability, namely 

NCF–1 and NCF–2, that are not equivalent to both each other and with 
the standard NCF concept. Along with the generally accepted concept of 

nonconstructability, we have identified and considered some other rather 

important concepts of nonconstructability, including the above ones [4,5]. 

In general, reversibility is a rather multiaspect concept. For the classical 

d–CA (d ≥ 1), that are a subclass of parallel discrete dynamic systems, the 
question of studying the reversibility of dynamics (trajectories) of finite 

configurations seems interesting and quite natural. It is natural to assume 

that a configuration cC(A, d, ) has the reversible dynamics if for it cp 

configuration (direct or indirect predecessor) is the only one, where p 
{-1, -2, -3, ...} and cp

 τ(n) = cp
 
+ 1, cp ≡ c. However, under this condition, we 

have two alternatives: (1) a cp configuration should belong only to the set 

C(A, d, ) or (2) the set C(A, d, ∞). With this in mind, we have defined a 
number of concepts of reversibility that allows us to more fully consider 

this concept regarding classical CAs. We define the concepts of real and 

formal reversibility because of the two main types of nonconstructability 
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for classical CA–models (types NCF and NCF–1). 

The nonconstructability issues of configurations are fundamental in the 

mathematical theory of CA–models along with their many applications, 

especially when using their applied and conceptual models of spatially 
distributed discrete dynamical systems, of which real physical systems 

are the most preferred prototypes. It is for this reason that this problem 

raises questions of considering the theoretical aspects of classical CA–

models. The nonconstructability problem is of a serious gnoseological 

interest in the case of embedding in CA-models of different cosmological 

objects. This may be due to various aspects of the reachability problem 
of certain conditions or clusters in the formation of special cosmological 

objects. At the same time, the reversibility of the main physical processes 

can serve as an analogue of the absence of certain nonconstructability 

types in classical CA–models [141]. This problematics is becoming more 
and more relevant in terms of formation of modern physical theories, and 

in connection with a number of attempts to interpret different anomalous 

phenomena from traditional points of view. 

Nonconstructible configurations types. The definition of the basic type 

of nonconstructible configurations (NCF) goes back to E.F. Moore and 

J. Myhill [1,3] concerning the block configurations, i.e. a configuration 

cbC(A, d, W) of a finite d–dimensional W–hypercube of automata in Zd 

(d ≥ 1) is an nonconstructable configuration (NCF) if and only if there is 

no configuration cC(A, d) such that cb⊂сτ(n). The nonconstructability 

NCF with respect to set of all finite configurations is equivalent to the 

existence of such configurations c from C(A, d, ) for which there are no 
predecessors from the set C(A, d). This nonconstructability concept is the 
strongest (it can be called "absolute" to a certain extent). However, at 

one time this moment caused a lot of discussions and misunderstandings, 

so such concept of nonconstructability in classical CA–models was by us 

analyzed in detail and differentiated from the point of view of essence of 
classical CA–models [141-144,156-161]. In general, the NCF definition 

represents a generalized concept of nonconstructability at level of block 

configurations and finite ones, quite naturally identifying both concepts. 
At the same time, the second approach to the nonconstructability concept 

of NCF seems to us more preferable from the point of view of studying 

of different aspects of the classical CA–models dynamics. 

In view of differentiation of the set C(A, d) on 2 not intersecting subsets 

C(A, d, ) and C(A, d, ∞) is quite natural for us to differentiate the general 
nonconstructability problem of finite configurations for case of classical 

CA–models relative to these subsets that is quite visually illustrated by 
the following table that is rather transparent and doesn't demand special 
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explanations, at the same time, clarifying the basic essence of the issue. 

Availability of predecessors for a configuration сC(A, d, ) 

C(A, d, ∞) C(A, d, ) Type of nonconstructability 

– – NCF 

+ – NCF–1 

– + NCF–2 

+ + Absolute constructability 

The table at the informal level defines and depletes the basic types of 
nonconstructability of finite configurations in classical CA–models while 

the issue of nonconstructability of infinite configurations went beyond 

our consideration, primarily due to their poorly developed principles of 
processing, interpretation and formation. At the same time, the infinite 

configurations, such as one–dimensional configurations, may be studied 

in connection with their ability to quite satisfactory represent numerical 

or other well–interpreted objects [141-144]. Based on the sets of finite, 
block and infinite configurations, we were able to significantly advance 

both the differentiation and detailing of the nonconstructability concept 

in classical d–CAs (d ≥ 1) relative to the previous state of this question. It 
is enough to make sure that the nonconstructability concept such as NCF 

refers primarily to block configurations, which allows us to consider the 

nonconstructability of two classes, usually not equivalent to each other: 
(1) block nonconstructability and (2) configuration nonconstructability in 

classical CA–models. It is easy to make sure: If a classical model d–CA 

(d ≥ 1) possesses the nonconstructability of the NCF or/and NCF–1 type, 

then the NCF and NCF–1 will be infinite disjoint sets of corresponding 
configurations; if a classical CA–model does not possess NCF, then it 

will possess NCF–1 and/or NCF–2. The nonconstructability problem for 

classical models d–CA (d ≥ 1) was investigated in sufficient detail by us 
and a number of interesting results in this direction were obtained [141-

144,156-161]; some of them will be presented below. The results were 

both qualitative and quantitative. At the same time, the lion's share of the 

results belonged to 1–CA models, whose studies are significantly simpler 
than d–CA models (d > 1), primarily due to the dimension of the models, 

which plays a decisive role in the study of many essential properties of 

the dynamics of classical CA–models. In particular, on the basis of a 
numerical approach, we have proved [3] that the problem of determining 

of the nonconstructability for classical models 1–CAs is algorithmically 

solvable, while for models d–CAs (d > 1) this problem is algorithmically 
unsolvable. As our studies of the dynamics of classical CA–models [141-

144] showed, the dimensionality significantly differentiates many aspects 

of the classical CA–models dynamics, often complicating their. 
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Thus, block nonconstructability of the NCF type causes configuration 

nonconstructability, while the opposite, generally speaking, is incorrect. 
In this regard, we have identified a new type of nonconstructability that 

occurs at the boundary of block and configuration nonconstructability, 

allowing for its qualitative expansion. In this case, the nonconstructible 
configurations of the NCF–3 type are defined as follows: 

A configuration c* = cb C(A, d, ) is nonconstructible of NCF–3 type 

if and only if block configuration cb of d–dimensional hypercube of unit 

automata in d–CA (d ≥ 1) is constructible, however configuration c* is 

nonconstructible, where  is the environment of the block configuration 

cb by infinite number of resting states "0". 

Note that the presence of nonconstructible configurations of type NCF–3 

in the CA–models to a certain extent determines a somewhat unexpected 

result: If there is a constructible kernel (non-zero part) in some finite CF, 
the configuration itself can be nonconstructible one. So, the presence of 

nonconstructability NCF–3 for a CA–model necessarily entails presence 

and NCF, while the opposite, generally speaking, is incorrect. The above 

four types of nonconstructible configurations (NCF, NCF–1, NCF–2 and 
NCF–3) are pairwise non-equivalent and allow more detail to investigate 

the nonconstructability problem in classical d–CAs (d ≥ 1) models. The 

nonconstructability of type NCF–3 can be considered as some subclass 
of the general nonconstructability NCF which in some cases is a quite 

certain interest in theoretical and applied studies of classical CA–models. 

First of all, this concerns the study of models as formal parallel systems 
for processing of finite words in finite alphabets, as well as modeling at 

the formal level some processes, including computational processes. A 

detailed discussion of this concept of nonconstructability is presented, for 

example, in [113,141-144,161,182-196] and in many others works. 

Meanwhile, it should be noted that nonconstructability of type NCF–3 is 

rather narrow and was defined by us as a result of the study of dynamics 
of infinite configurations having special structures [141]. This type of 

nonconstructability does not belong to the main types mentioned above 

and we, in practice, did not pay much attention to it. By identifying NCF, 
NCF–1, and NCF–2 as basic types of nonconstructability in classical CA 

models, we identified and nonconstructability types such as NCF–3 and 

relative nonconstructability (relative to a certain subset of set C(A, d, )). 
This allowed us not only to study substantially more in detail the essence 

of nonconstructability in CA–models, but also to obtain quite strong tools 
for studying many dynamic properties of classical CA–models. 

If a certain NCF (NCF–3) is absolutely nonconstructible configuration 
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relative to the set C(A, d, )∪C(A, d, ∞), then the configurations NCF–1 

and NCF–2 are relatively nonconstructible configurations relative to the 

sets C(A, d, ) and C(A, d, ∞) respectively. In the following table, the sign 
"+ (–)" indicates the presence (absence) of the corresponding type of the 

nonconstructible configurations in the classic d–CA (d ≥ 1), determining 

the permissible combinations of their types. Detailed discussion of these 
and related questions from different points of view (both quantitative and 

qualitative) can be found, for example, in [113,141,161,182-196]. 

Valid nonconstructability types for 

classical models d–CAs (d ≥ 1) 
Admissible types 

combinations 
NCF NCF–1 NCF–2 NCF–3 

+ + + + Yes 

+ + + – Yes 

+ + – + Yes 

+ + – – Yes 

+ – + + Yes 

+ – + – Yes 

+ – – + Yes 

+ – – – Yes 

– + – + No 

– + – – No 

– – + + No 

– + – – Yes 

– – + – Yes 

– – + – Yes 

– + + + No 

– + + – No 

– – – + No 

– – – – No 

So, it follows from the table that the classical models d–CA (d ≥ 1) have 

at least one type of nonconstructible configurations NCF, NCF-1, NCF-2 
and/or NCF–3. The nonconstructability problem as a whole, including a 

number of special cases, was investigated in detail by us regarding the 

classical models d–CA (d ≥ 1) at both the formal and experimental (based 
on computer modeling in Maple and Mathematica systems) levels. The 

results obtained in this direction were used by us to research the dynamic 

properties of CA–models, which revealed a number of quite interesting 

behavioral properties of these models. These results are available at both 
formal and qualitative levels in [113,141-144,156-161,182-196]. 
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The nonconstructability criteria for classical CA–models. As the first 

criterion for existence of NCF in classical CA–models, the Moore–Myhill 
criterion can be considered based on mutually erasable configurations 

(MEC) defined as follows. Let W be a coherent block of unit automata of 

a d–CA model (d ≥ 1), and B be a set of all neighboring automata for W 
according to a neighborhood index X. Let CF(P) now be a configuration 

of a finite block P of elementary automata of the model. Then the block 

configurations CF(B)∪CF(W1) and CF(B)∪CF(W2) are referred to as 

the MEC pair for a global transition function τ(n) in d–CA if and only if: 

[CF(B)∪CF(W1)] τ(n)  [CF(B)∪CF(W2)] τ(n);      CF(W1) ≠ CF(W2) 

Block W will be referred to below as an internal block (IB) of the MEC 

pair and denote IBMEC. While in the case of finite configurations c1, c2 

(c1, c2C(A, d, )) they form the MEC pair if and only if c1 
≠ c2. Definition 

of MEC pairs for finite configurations is quite convenient in the research 
of the classical CA–models dynamics. Obviously, both MEC definitions 

are equivalent relative to erasability property for classical CA–models. 

At one time, quite a few interesting questions were formulated regarding 

MEC by E. Moore, the solution of which made it possible to obtain a lot 

of interesting results for the 1–dimensional case. In particular, our results 
illustrated all variety of IBMEC types even in the case of rather simple 

binary classical models 1–CAs with the Neumann–Moore neighborhood 

index [3]. We shown that many results related to the nonconstructability 

problem form a fairly effective part of the basic tools for studying the 
dynamics of classical CA–models, so various estimates of IBMEC, along 

with other aspects of this problematics, are of undeniable interest. In this 

regard, relatively to important question of the minimum size of a simple 
IBMEC going back to E. Moore, we obtained the following result [3]: 

For integers a ≥ 3 and n ≥ 2 in the classical 1–CAs with states alphabet 

A = {0,1, ..., a–1} and neighborhood index X = {0,1,2, ..., n–1} there are 

MEC with a prime IB of minimum size n. Fraction ∆(a, n) of classical 

1–CA with IBMEC of minimum size one, with respect to all 1–CAs with 

alphabet A = {0,1, ..., a–1} and neighborhood index X = {0,1, ..., n–1}, 

satisfies the relation ∆(a, n) > (2an – 1)/a2n. If in a classical 1–CA with 

alphabet A = {0,1, ..., a–1} and neighborhood index X = {0,1,2, ..., n–1} 

there are IBMEC of minimum size f, then the ratio 1 ≤ f < an-1(an-1–1) + 

n–2 takes place. The problem of determining the minimum size MEC 

for d–CAs (d ≥ 2) is algorithmically unsolvable. 

We considered the issues related to the existence of MEC in detail and in 

this direction we obtained a number of rather interesting results [3,5,113, 
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117,141-144,156-161]. These studies were driven by the fact that the 

first and one of the main criteria for the existence of NCF in CA–models 
(and not only classical ones) is the Moore–Myhill criterion: 

An arbitrary classical model d–CA (d ≥ 1) has NCF if and only if there 

are MEC pairs for its global transition function. 

In the future, this criterion was somewhat generalized by us taking into 

account cases of nonconstructability of types NCF–1 and NCF–3 [144]. 

Our research in this direction has yielded a number of both quantitative 
and qualitative results, revealing many issues of nonconstructability in 

classical CA–models [3,5,10,11,113,117,141-144,156-161,182-196]. 

Meanwhile, rather detailed studies of the nonconstructability problem in 

classical CAs led us not only to understand the insufficient effectiveness 

of approach based on the MEC concept, but also allowed us to introduce 
the γ–configurations concept (γ–CF) [165], which turned out to be quite 

fruitful. Our concept of γ–CF is slightly different from the concept of k–

balanced global transition functions introduced independently of us by A. 
Maruoka and M. Kimura [166] in 1976 but is completely equivalent to it. 

The γ–configurations concept was introduced by us as part of research of 

the nonconstructability problem in classical CA–models while by Kimura 
and Maruoka for study of parallel global mappings τ: C(A, d) → C(A, d), 

determined by global transition functions τ in the classical d–CAs. Let us 

introduce the very concept of block γ–configurations (γ–CFs). 

Let #(b) be the number of elements of an arbitrary set b and CF(j) be the 

set of all kinds of configurations of the finite block j in the alphabet A of 
the classical cellular model CA(A, d, τ, X). Let’s say that in a classical 

CA–model CA(A, d, τ, X), the γ–CFs exist on a finite g–block if and only 

if g(γ) ≠ #(CF(g∪B))/#(CF(g)) of predecessor–configurations (relative 

to GTF of the CA–model) exist for at least one configuration of g, where 

B is block of elementary automata which are adjacent to all automata of 

the g–block according to the neighbourhood index X of the CA–model. 

Based on the γ–CF concept, we obtained a new criterion for the existence 

of NCF in classical CA–models [165], of significant interest for research 
on CAs issues in general, especially their dynamic aspects. 

A classical d–CA model (d ≥ 1) has nonconstructability of the NCF type 

(possibly NCF–3) if and only if γ–CFs exist for it. Any CA–model will 

possess the MEC if and only if the model possesses γ–configurations. 

Note that this statement refers to both classical and unstable CA–models. 

The γ–CF concept turned out to be significantly more effective than MEC 

in obtaining of various numerical estimates for the classical CA–models, 
allowing often to obtain estimates quite close to the optimal [141-144]. 
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Indeed, the criterion based on γ-configurations allowed us to obtain much 

more acceptable estimates for certain numerical characteristics of d–CAs 
(d ≥ 1). In particular, quite significant contrast can be obtained in results 

of this type regarding the use of the concepts MEC and γ–configurations. 

So, an example of the application of both approaches for estimating the 
minimum dimensions of NCF in relation to the known game "Life" [161] 

is very clear. It's easy to make sure that the game is nothing more than a 

binary classic 2-CA with Moore neighborhood index. Study on the "Life" 

game was conducted by many mathematicians and programmers along 
with many amateurs, mainly based on computer modeling. This classical 

2–CA model is one of the most famous. A.R. Smith, studying the binary 

2–CA corresponding to the "Life" game, showed that this CA–model has 
minimum size 1010x1010 of NCF. To obtain this an estimate, A.R. Smith 

used an approach based on the NCF concept, while based on the concept 

of γ–configurations, we managed to significantly improve this estimate, 
lowering it to a quite visible size 49x49. In this direction there are many 

other results of this type [141-144]. So, the γ–configurations concept of 

Aladjev–Kimura–Maruoka, along with the nonconstructability criterion 

based on it, allows to enough effectively investigate a lot of quantitative 
aspects of dynamics of classical d–CA models, while the MEC concept 

in a number of cases is more convenient for their qualitative study. Thus, 

in many ways, both concepts complement each other quite well. 

The same way we investigated universal classical binary model 2–CA of 

E. Banks [164] which was at the time minimum on complexity. It can be 
shown that this 2–CA model is suitable for implementing computational 

schemes of arbitrary complexity in it. We have proved [141] that there 

are NCF in the model already on blocks of size 14x14. In this regard, a 
rather interesting hypothesis arose: 

The universal classical models d–CA (d ≥ 1) with minimal complexity 

d∗(states alphabet cardinality)∗(neighborhood template size) will have 

the nonconstructability of NCF and/or NCF–1 type. 

Today, all the minimum universal d–CAs (d ≥ 1) known to us correspond 

to this hypothesis. An extensive enough bibliography on this issue can be 
found in [11,117,141-144,156-161,164]. The same question includes our 

numerical results concerning on the sizes of MEC, γ–CF, NCF, NCF–1, 

NCF–2 and NCF–3 along with some other important characteristics. 

In order to better understand the nonconstructability concept and to create 

on its basis an effective apparatus for study the dynamics of CA–models, 
it is extremely desirable to identify certain relationships between various 

characteristics of MEC, γ–CF, NCF, NCF–1, NCF–2 and NCF–3 both 

quantitative and qualitative ones. We considered this issue in sufficient 
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detail, which made it possible to get many of interesting results [141-144, 

156-161]. So, especially many results (both quantitative and qualitative) 
regarding MEC, IBMEC, γ–CF, NCF, NCF–1, NCF–2 and NCF–3 were 

obtained by us for classical 1–CAs models; a number of those results had 

proved to be exhaustive decisions on one question or another. Among 
them, one can note in particular the result that determines the estimate of 

the maximum size of the internal block of MEC for an arbitrary 1–CA 

model, which is the basis for proving the algebraical solvability of the 

problem of the existence of MEC, γ–configurations, and therefore NCF 
(NCF–3) for such models. While on the basis of the unsolvability of the 

domino problem, we proved the algebraic unsolvability of the existence 

problem of MEC, γ–CF, and NCF (NCF–3) for d–CAs (d ≥ 2) models. 
Further research on this issue allowed us to present a new MEC concept 

as a definite basis for the generalized nonconstructability criterion in the 

classical d–CAs (d ≥ 1) models [4,5,10,11,113,141,183], namely: 

Two configurations c1, c2C(A, d) (c1 ≠ c2) form the pair of generalized 

mutually erasable configurations (MEC–1) with respect to the global 

transition function τ(n) of a classical model d–CA (d ≥ 1) if and only if 

the next determining relationship c1τ(n) = c2τ(n) = с*С(A, d, ) is valid 

for them. 

Pairs of MEC–1 similar to MEC pairs may be formed by configurations 

such as NCF–1 and/or NCF, i.e. {NCF–1, NCF–1}, {NCF, NCF} and 
{NCF, NCF–1}. Unlike IBMEC, a certain analogue is defined for the 

MEC–1 in the form of a "absorption node" c*, whose size is of certain 

interest in a number of numerical studies of nonconstructability, which is 

due to the MEC–1 pairs existence. The expediency of this concept was 
due to the fact that the of MEC–1 pairs definition allows to use infinite 

configurations too. For example, it has been shown that the minimum 

sizes of configurations NCF–1, NCF and c* can be identical. At that, if 
c* can be NCF–1, then c* can`t be NCF; property is based on principal 

difference between the nonconstructability types NCF and NCF–1. 

Meanwhile, there are a number of other differences between the concepts 

MEC and MEC–1. So, the presence of MEC for classical d–CAs (d ≥ 1) 

model entails the presence of MEC–1 in the model, while the opposite is 
generally incorrect. This circumstance is caused by the fact that the MEC 

presence in arbitrary classical model d–CA (d ≥ 1) is one of two criteria 

of existence of the NCF nonconstructability in the model, whereas the 
existence in the model of MEC–1 not necessarily cause the presence of 

NCF nonconstructability for CA–model. The above concept of mutual 

erasability MEC–1 in the classic d–CAs (d ≥ 1) models is closely related 

to the general nonconstructability problem as evidenced by the following 
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important enough result: 

A classical d–CA (d ≥ 1) model has at least nonconstructability of the 

NCF type (possibly NCF–3) or NCF–1 if and only if MEC–1 pairs exist 

for the model. If MEC–1 there are no for the model d–CA (d ≥ 1), the 

model will have NCF–2; moreover, the existence of NCF–2 can be fully 

combined with the existence for the model of MEC–1. 

This result is a significant enough generalization of the Moore–Myhill 

criterion (based on MEC) and the Aladjev–Kimura–Maruoka criterion 

(based on γ–configurations) that is equivalent to the first, extending them 
to other types of nonconstructability in d–CAs (d ≥ 1) models. A number 

of important results on CAs dynamics were derived from this criterion. 

Our results on the nonconstructability questions for classic d–CA models 
(d ≥ 1) in general can be found, in particular, in publications [3-5,10,11, 

113,141-144,155-161,164,182-196] and in references cited in them. 

Note, along with classical CA–models, the so–called finite CA–models, 

which consist of any, but finite number of elementary automata, are of 

essential application interest. This class of CA–models from a theoretical 
standpoint was studied quite intensively by the Japanese school, as well 

as by a number of other researchers [11,164]. Whereas our results in this 

direction are quite limited and are presented in [11,141-144]. Meanwhile, 
study in this direction is quite promising, taking into account numerous 

applied aspects of this class of CA–models and, first of all, using them as 

parallel discrete models of various processes, phenomena and objects. In 

particular, it is shown that in the general case of finite CA–models, the 
presence of MEC pairs may be sufficient, but not necessary, for existence 

in them of nonconstructability of the NCF type. Moreover, the problem 

of nonconstructability for finite models is very closely related to the type 
of boundary conditions [161]. Many of very interesting properties of the 

finite CA–models were obtained on the basis of computer simulating in 

Maple and Mathematica systems [10,11,50-60,66-73,113,182-196]. 

Another interesting class is the so–called cellular automata on partition 
(CAoP), introduced by T. Toffoli and N. Margolus. The CA–model on the 

partition is defined as an ordered tuple of five basic components CAoP ≡ 

<Zd, A, m, Ψ(h), Ξ>, where the first two components Zd and A are similar 
to the case of classical CA–models, m is the edge size of d–dimensional 

hypercube into which the Zd space is broken; Ψ(h) – local block transition 

function (LBF; h=md); Ξ – rules of switching of blocks of the Zd space. 

The functioning of models d–CAoP (d ≥ 1) is sufficiently simple and is 

considered sufficiently detailed in [113,141]. Some comparative analysis 
of the models of both types (CAs and CAoPs) was also carried out there. 

Currently, models like CAoP are widely used, primarily to solve a lot of 
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physical modeling problems, using, in particular, software and hardware 

of CAM machines based on CAs computing models [113,164,183]. 

The CAoP models and some their interesting modifications were studied 

by us both by theoretical and simulation methods. In the second case, a 
number of procedures for Mathematica were programmed, which made it 

possible to experimentally investigate a number of significant aspects of 

the CAoPs and a number of their modifications (composition of models, 
dynamics of models, etc.) [161]. First of all, by us has been shown that 

for models CAoP, the classification of nonconstructability, like the case 

of classical CA–models (NCF, NCF–1, NCF–2, NCF–3) is not entirely 
appropriate. A criterion for the nonconstructability existence of NCF type 

for CAoP models was established, which can be formulated as follows: 

A model CAoP will have NCF nonconstructability if and only if MEC 

pairs exist for such model in the above sense. 

It is shown [141] that number of the models CAoP ≡ <Zd, A, m, Ψ(h), Ξ> 

which don't possess the MEC pairs and, therefore, NCF is equal to  
 
 

dm
a !  

while their share concerning all such models will be equal to  
 
 

dd mdm m aa ! a , 

i.e. fast enough approaching zero already with sufficiently small values 

a, m and d. Thus, in the class of CAoP the models that to a certain extent 
have the reversibility property are "exotic". At the same time the absence 

of NCF nonconstructability for some model CAoP, entails the closure of 

the set C(A, d, ∞) relative to the global transformation τ(h) of the model, 
therefore the absence of NCF–1 for it. While for classical CA–models, 

this statement is generally incorrect. 

The closure problem of the set C(A, d, ∞) (d ≥ 1) relative to the global τ(h) 

transformation, determined by local block function Ψ(h) of the d–CAoP 
model, is algorithmically solvable whereas a set of NCF for any d–CAoP 

model is recursive. The closure of the set C(A, d, ∞) with respect to the 

mapping defined by local block function Ψ(h) of a model d–CAoP (d ≥ 1) 
results in the presence of the nonconstructability NCF for the model, but 

the inverse statement is generally speaking incorrect. Therefore, for the 

CAoP–models the existence of NCF–1 without NCF is impossible. On 
the other hand, for the classical CA–model, the nonconstructability types 

NCF and NCF–1 are not equivalent, in the absence of NCF for it, this 

model can have NCF–1. If problem of existence of nonconstructability 
NCF for classical d–CAs (d ≥ 2) is algorithmically unsolvable whereas in 

the class of d–CAoPs (d ≥ 1) the problem is algorithmically solvable and 

the algorithm of the constructive decision reduce to clarification of lack / 

existence of mutual unambiguity of mapping Ψ(h): Ah ⇒Ah. It is shown 

[141] that in general, the nonconstructability property of NCF type with 
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respect to the mutual modeling of the d–CA and d–CAoP models is not 

invariant. Moreover, modeling of an irreversible model by an appropriate 
reversible model is quite acceptable [10,11,113,141,183]. 

It follows from the arguments [141] that based on the same definition of 
nonconstructability of the NCF type, we obtain that its cause-effect bases 

for classical CA–models and d–CAoP–models differ significantly. This 

difference underlies the major differences for many fundamental dynamic 
properties of classical CA–models and CAoP–models and gives rise to a 

significantly greater need to model processes that need the reversibility 

property of their dynamics [113,141,161]. By completing a brief survey 
of some our results (details of our results in this direction can be found, 

for example, in [148,155-161]) regarding the general nonconstructability 

problem in classical CA–models, we will focus on its features due to the 

reversibility problem of models, which is quite important both theoretical 
and applied interest. At the same time, we understand the reversibility, 

taking into account the specifics of the classical CA–models, explaining 

its specificity as follows. 

The reversibility problem of classical CA–models. The reversibility of 

classical d–CAs models (d ≥ 1) is one of the most important properties, 

primarily from the standpoint of modeling of various physical processes 
and calculation theory; it is closely related to the nonconstructability of 

NCF type for the CA–model, primarily. At the same time, some remarks 

of a principled nature regarding the problem of reversibility in general, 

which, in turn, is very closely related to the nonconstructability problem 
for CA–models in general and for classical CA–models in particular, are 

quite relevant here. On the formal level, the reversibility problem of the 

function F from n variables {x1, x2, ..., xn} is reduced to the question of 
the possibility of unambiguous recovery for it of any tuple {x1, x2, ..., xn} 

based on the known form of the function F and its value F(x1, x2, ..., xn) 

on this tuple. Naturally, on n inputs and (n–k) outputs of some algorithm, 

provided that they belong to the same alphabet, it is impossible to obtain 
this reversibility type {k = 1..n–1}. Therefore, along with the result F(x1, 

x2, ..., xn), it is required to have (n–1) values of tuple <x1, x2, x3,...,xn> to 

restore the missing value xj; j{1, 2, ..., n}, that is, we should have some 

additional information that allows, based on the type of function F, along 

with its value on the tuple, to restore the entire desired tuple. In principle, 

some other methods of obtaining such additional information quite may 

be used. A number of approaches have been proposed to create reversible 
computer models, including at the biomolecular and chemical levels. In 

[141,113,161] a quite detailed discussion of the reversibility problem as a 

whole is given. Regarding CA–models, the problem has some specificity. 
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In general, by reversibility in the case of classical CA–models, we mean 

two types of it: (1) block reversibility and (2) configuration reversibility. 
In both cases, the predecessor of the corresponding type (one, more or 

not) must be on the previous step of the CA model progress. In the case 

of block configuration, block configurations are the predecessors, while 
in the case of finite configuration, finite configurations must be, in the 

opposite case the finite configuration is relied by us as a nonconstructible 

one of type NCF–1 or/and NCF. Therefore, a classical CA–model can be 

block–reversible and configurationally irreversible. Obviously, a finite 
configuration containing the nonconstructible block subconfiguration is 

irreversible. This approach to the reversibility concept plays an important 

role in the study of both theoretical and applied aspects of the dynamics 
of classical CA–models. Meanwhile, the use of CA–models as formal and 

promising prototypes of computing systems involves the research of the 

questions concerning the reversibility of the dynamics of these models. 

The reversibility problems of CAs dynamics play a rather important role, 

primarily in terms of their using as an environment for modeling various 
physical processes. In this regard, one of the main research issues in the 

classical CA–models is the reversibility of their dynamics. Today there 

are a number of quite interesting classes of CA–models with the general 
reversibility property, among which the aforementioned CAoP–models 

can be noted, together with reversible CA–models specially developed by 

T. Toffoli and studied from standpoint of computational and constructive 

universality. Quite a lot of study is devoted to various questions of the 
CA–models reversibility of of different types and classes [113,141,164]; 

[161] presents the most interesting results in this direction. Meanwhile, 

the reversibility problem for classical CA–models is more multifaceted 
and is discussed in [113,161]. In general, the reversibility problem of the 

CA–models is not so unambiguous. Meantime, we used a stricter notion 

of reversibility, which we understand as a possibility of unambiguously 

restoring the dynamics of CA at any time; that is, such reversibility when 
it is possible to accurately determine at each moment t > 0 for each finite 

configuration in the CA–model of its sole predecessor at moment t – 1. 

A d–CA ≡ <Zd, A, τ(n), X> dynamics we will call reversible in only case 

when for each configuration cC(A, d) exists the only one predecessor 

c*C(A, d) such that c*τ(n) = с; otherwise, the dynamics of such model 

will be called irreversible. 

Thus, the dynamics irreversibility for a CA–model is naturally defined by 

the absence of predecessors for some configuration of cC(A, d) or the 
presence of more than one predecessor from the set C(A, d) for it. At the 

same time, as noted above, for classical CA–models, irreversibility can be 
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both block and configuration. The presence in classical CA–model of the 

NCF–1 nonconstructability even in the absence of NCF leads (according 
to our concept of reversibility) to the irreversibility of such model, more 

precisely, the dynamics of its configurations in general [3,141,161]. Our 

definition of irreversibility can be considered as purely formal because of 
the uniqueness of infinite predecessors, that, in our opinion, have a rather 

controversial interpretation. Therefore, we introduced the concept of the 

formal and real dynamic reversibility. Naturally, from formal standpoint, 

we can consider arbitrary permissible possibilities, while of the applied 
standpoints the "instant" transition from infinite configuration to a finite 

one and vice versa, in our opinion, does not allow sufficiently transparent 

interpretations. At the same time, the theoretical studies of the dynamics 
reversibility of classical CA–models are difficult enough (however, like 

many other rather important problems in this class of parallel dynamical 

systems), so the use of computer modeling for this purpose proved to be 
extremely effective. Like other tasks, for the experimental study of the 

CAs dynamics, we used the appropriate procedures programmed in the 

Maple and Mathematica systems, for which a rather large collection of 

software tools was created. Many of results related to the reversibility of 
different types due to the nonconstructability both of the block and finite 

configurations in classical CAs, along with a rather detailed discussion of 

general and special questions in this direction, can be found, for example, 
in our works [10,11,113,141-148,155-161,164,182-196]. 

Algorithmical aspects of the nonconstructability problem for classical 

cellular automata. The algorithmic solvability of the nonconstructability 

problem is one of key issues of the mathematical theory of CA–models 
and a number of its important applications, primarily when using CAs of 

both conceptual and practical models of spatially distributed dynamical 

systems, of which real physical systems are of particular interest [113]. 
In general terms, the solvability of the nonconstructability problem of is 

reduced to the question: Is there an algorithm to determine whether a 

classical CA–model will possesses the nonconstructability of type NCF, 
NCF–1, NCF–2 and NCF–3? In its general formulation, this problem 

remains open for today, but there are answers to many more specific but 

equally important issues that are independent interest. The most complete 

solution to the problem we obtained in the case of classical 1-CA models. 
First of all, with regard to block and finite configurations, the following 

main result takes place, having a number of rather important applications. 

For an arbitrary classical 1–CA the determination problem of the type 

of nonconstructability (NCF, NCF–1, NCF–2, NCF–3, constructible) is 

algorithmically solvable. The determination problems of minimum size 
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of the IBMEC, the presence of MEC and γ–configurations in classical 

1–CAs models are algorithmically solvable. 

The methods used in the proof allow not only to constructively determine 

the type of an arbitrary block and finite configuration [151,155], but also 
to establish the structure of many of their direct predecessors, which in 

many cases is quite important. For the general d-dimensional case (d ≥ 1), 

the question of determining for a block configuration of a particular type 
(constructible, NCF, NCF–3) is algorithmically solvable, but it does not 

say anything about the solvability problem as a whole, that is, about the 

nonconstructability existence of the NCF (NCF–3) type for an arbitrary 
d–CA model (d ≥ 2). This problem in the case d ≥ 2 is unsolvable. 

One of known approaches to solving the solvability problem of existence 
in the classical CA–models of this or that type of nonconstructability is to 

determine the upper limit for minimum sizes of IBMEC, γ-configurations 

or the nonconstructible configuration of the type (NCF, NCF–1, NCF–2, 

NCF–3). In the case of classical 1–CAs models, we did just that, and in 

this direction we obtained a number of results of a certain independent 

interest [113,141,161]. This question plays an important role in assessing 

the minimum size of γ–configurations, studying a number of dynamical 
properties of classical CA–models and in study of the nonconstructability 

problem in general. As part of the study of the solvability of the problem 

ща nonconstructability, we and many other authors studied a relationship 
between the minimum sizes of NCF and IBMEC in classical CA-models. 

In addition, contrary to the efforts made in that direction, no satisfactory 

solution had been obtained. However, a number of our results obtained in 

this direction [113,141,155,183] have led to the following assumption: 

For classic d–CAs models (d ≥ 2), in general, it is impossible to obtain 

satisfactory quantitative estimates for the minimum size of NCF type 

configurations as a function of minimum IBMEC size, and vice versa. 

Using the unsolvability of the well–known "domino" problem, we proved 

the main result [10,11,113,141-147,183]: 

The existence problems in classical d–CA (d ≥ 2) of nonconstructability 

of types NCF, NCF–1, NCF–2, NCF–3 as well as MEC, MEC–1 and 

γ–configurations are algorithmically unsolvable. 

The first part of the statement was proved by J. Kari [167] on the basis of 

another approach. Finally, on problems such as nonconstructability and 
reversibility, the closeness of sets of finite and infinite configurations 

relative to the global transition functions, the solvability of a number of 

problems for classical d–CAs (d ≥ 1) as well as on issues associated with 
them we obtained many results, which can be found, in particular, in [3, 

10,11,113,141-148,155-161,164,182-196] and in some others our works. 
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5.3. Extreme design capabilities of classical cellular automata 

The axiomatics of classical CA-models are determined by their four basic 

parameters, namely: the dimension d of homogeneous space Z; the states 

alphabet A of each unit automaton, the neighborhood index X and local 

transition function σ(n). Within the framework of axiomatics, the question 
of the design capabilities of classical CA–models is of particular interest: 

How serious are capabilities of the classical CA–models (within their 

axiomatics) in terms of generation of the finite configurations by them? 
Based on their own interests and tastes, many researchers determine the 

maximum generating capabilities of CA–models in different ways within 

their basic axiomatics. Meanwhile, today we do not have a single idea of 
the maximum generative capabilities of classical CA–models and it is a 

rather subjective. In contrast to nonconstructability, it is of considerable 

interest to determine the properties that reflect the maximum constructive 
properties of CA–models with respect to generating by them of the finite 

configurations. Let's consider the most famous approaches based on the 

universal and self-reproducing finite configurations [3,141,156-161,164]. 

Universal finite configurations in classical cellular automata. In well–
known monograph [168], S. Ulam formulated a rather interesting problem 

about existence of a simple universal matrix system. Its positive solution 

would give an interesting example of a simple generating formal system 
which can be sufficiently effectively investigated by known mathematical 

methods. We will need a number of necessary concepts and definitions as 

used below. A square matrix U(n, a) of order n with members from a set 
A = {0,1, ..., a–1} is called the universal matrix relative to the class of all 

matrices of order m<n if for each matrix B(k,a) (k≤m) there is an integer 

j > 0 such that matrix B will be the main minor of the matrix Uj(n, a). So, 
within this definition, the following result solves the existence problem 

of a universal self–reproducing matrix system [10,11,113,141,170,183]. 

There is an integer wo > 0 such that universal matrices U(n, a) cannot 

exist for arbitrary integers n ≥ wo and a ≥ 2. 

It follows from this result that universal generating matrix systems of a 
sufficiently high order do not exist. Whereas for infinite matrices this 

question is still open, that is, in the original statement of S. Ulam, the 

problem of the existence of a universal reproducing matrix system is still 

waiting for its solution. Certain related materials can be found in [113]. 

As an interesting applied aspect of this problem, one can point out, for 

example, the use of classical CA to simulate logical deductive systems in 

pure mathematics. In this case, configurations from the set С(A, d, ) are 
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associated with logical calculus sentences, while an initial configuration 

of the CA–model with its axiom and GTF with calculus production rules. 
Then the sequence of the global transition function (GTF) that applies to 

the initial configuration (axiom) is a proof (conclusion) in this deductive 

model. Deductibility and completeness problems are the main problems 
in such models. These two problems are directly related to the problems 

of the existence in classic d–CA (d ≥ 1) models of configurations such as 

NCF and UFC (universal finite configurations), respectively. The use of 

classical d–CA (d ≥ 1) for modeling developing systems of cellular nature 
can be noted as the second applied aspect of the UFC existence problem. 

The existence problem of the UFC for classical CA–models, formulated 

by S. Ulam [169] for the case of regular lattices, is very closely related to 

the completeness problem of H. Yamada and S. Amoroso for the case of 

polygenic CA–models [155]. This problem can be formulated as follows: 

Can there be a finite configuration or a finite set of them for a classical 

d–CA model (d ≥ 1), of which the set C(A, d, ) can be generated by the 

global transition function τ(n) of the model? In other words, the question 

comes down to the permissibility of the following relationship, namely: 

∪k<ck>[τ(n)] = C(A, d, ); k=1..p. Consequently, the finite configurations 

ckC(A, d, ), that satisfy the above condition are called universal finite 

configurations (denoted as UFC). For the case of finite CA–models, the 

existence problem of the UFC has a positive solution, namely: There are 

finite d–CAs models (d ≥ 1) that have one or all configurations as UFC 
[141]. A completely different picture takes place for the case of infinite 

classical CA–models. Using results on the nonconstructability problem 

(NCF–1 & NCF), we showed that such problem even in a more general 
setting has the negative solution for classical d–CAs (d ≥ 1) models. So, 

the following result, having a number of applications along with many 

theoretical aspects, indicates this [10,11,113,141,143,183]. 

A classical d–CA model (d ≥ 1) does not allow the presence of a finite 

set of universal finite configurations. 

The outline of the evidence, without breaking the commonality, is given 

in the assumption that there is such configuration goC(A, d, ) that there 

is the relation <go>[τ(n)]  C(A, d, ), i.e. configuration go will be UFC: 

τ(n): … g-1 g0  g1  g2  …  gj  …;  ∪gj = C(A, d, );  j=0.. 

But then there are only four possibilities for configuration predecessors 

g-1: (1) only finite configuration, (2) finite and infinite configurations, (3) 

only infinite configurations, (4) no predecessors, i.e. go is NCF. So, cases 

(1,2) are obviously not allowed because otherwise a sequence <go>[τ(n)] 
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will be cyclic one, preventing the entire set of finite configurations from 

being obtained, by contraring to the assumption; the case (4) should also 
be excluded from consideration as invalid, since in this case each finite 

configuration having occurrence go will also be NCF, making it utterly 

impossible to generate the set C(A, d, ) from the initial configuration go; 

finally, case (3) characterizes the configuration go as a nonconstructible 

one of NCF–1 type, which ensures that the CA–model has an infinite set 

of configurations of this type, which, it is easily to verify, also makes it 

impossible generating of the set C(A, d, ) from the initial configuration 

go. Thus, the set C(A, d, ) can`t be generated from a finite configuration 

by means of the global transition function of a classical CA–model, i.e. 

for an arbitrary CA–model there is no an UFC. 

In the same direction, under certain conditions, there is a stronger result 

expressed by the following suggestion [113,141,143,183]: 

If classical model d–CA (d ≥ 1) has nonconstructability of the NCF type 

at existence for it of a set W of configurations of the NCF–1 type , then 

for the model there is no finite set of such configurations cgC(A, d, ) 

(g = 1..p) that the following determining relation occurs, namely: 
(n)

g g
g

;c C(a,d , )\W c C(a,d, ) ( g 1..p)     
 

 

Moreover, it directly follows from the above result that in some cases the 

narrowing of a set C(A, d, ) of all finite configurations to the set of only 
constructible configurations that need to be generated does not lead to a 

positive solution of the UFC existence problem for classical CA–models. 

Based on an algebraic approach using the results on nonconstructability, 
a more general and strong result [141] has been proved, which answers a 

number of previously raised questions, being a rather significant part of 

apparatus for dynamics studying of the classical CA–models [113]: 

If a classical model d–CA (d ≥ 1) with alphabet A = {0,1,2,3,4, ..., t–1}, 

where t – a prime number and τ(n) – its global transition function, has 

a set M of configurations of the NCF and/or NCF–1 type, then there 

are no finite sets of global transition functions τ(nj) and configurations 

cjC(A, d, ) given in the alphabet A, for which two relationships exist: 

j j
(n ) (n )

j j
j j

;;c c1) 2) M ; jC(a,d, )\M (d 1 1..p)
   

    
   
   

 

At the same time, for the alphabet A (t is a composite number), there is 

a formulation of the result only with the relationship (2); this statement 

takes place for prime t and nonconstructability of NCF–2 type; that is, 

global transition function τ(n) conditiones a set M of nonconstructible 
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configurations of the NCF–2 type. If model d–CA (d ≥ 1) does not have 

nonconstructability of the NCF type, then the intersection of the sets of 

finite configurations generated by its global transition function from 2 

different finite configurations is empty. 

From this result follows a number of important properties of the classical 

CA-models; in particular, it follows from it that the classical d–CA (d ≥ 1) 

models are not finitely axiomatized parallel formal systems, even if the 

nonconstructible finite configurations are excluded of the set C(A, d, ). 

So, each set of nonconstructible configurations (NCF, NCF–1, NCF–2, 

NCF–3) relative to the completeness problem in classical d–CAs (d ≥ 1) 

has the same immunity as the set C(A, d, ) itself. This result allows a 
much deeper understanding of the nonconstructability problem in the 

classical CA–models. At the same time, it turned out that the exclusion of 
each of the four permissible nonconstructability types does not seriously 

affect the maximum constructive capabilities, in particular, in light of the 

existence of UFC sets for classical CA–models. To a certain extent, this 

is a direct way to define the complexity concept of finite configurations 
in classical CA–models. 

We considered the existence of universal configurations in classical CA–

models at reducing of the requirement for their definition [147,155,161]: 

Are there classical d-CA (d≥1) together with initial finite configurations 

such that together they will generate all set of block configurations? In 
such setting, we do not require of generating of all finite configurations 

from some initial configuration, but only entering of set of all block finite 

configurations into the generated configurations, which is a significantly 
weaker condition in terms of the classical CA–models concept. Thus, it is 

easy to convince that if a model d-CA (d ≥ 1) exists with this property, all 

configurations generated from some finite configuration and containing 

all finite block configurations will be reproducing in the Moore sense. 
While the nonconstructability of NCF type (possibly NCF–3) for model 

will be absent at presence in it the nonconstructability of NCF–1 type. 

Obviously, if from a configuration c*C(A, d, ) it would be possible to 

generate the whole set C(A, d, ) by a global transition function, then c* 
would be nonconstructible configuration of the NCF–1 type. 

To computer study the dynamic properties of classical models 1–CAs we 

have created a number of tools in various programming systems; many 

of them programmed in Maple are presented in [98,109,111,115,171]. As 
many computer experiments show, these models have not only universal 

reproducibility in the Moore sense of finite configurations along with a 

non–zero finite configuration from which a sequence of configurations 
that will collectively contain all binary block configurations is generated. 



 - 83 - 

Numerous computer experiments [98,113] allow us to formulate a rather 

interesting assumption, namely: 

For each A = {0, 1, ..., p–1} (p is a prime), there is at least one classical 

model d–CA (d  1) with the states alphabet A and the Neumann–Moore 

neighborhood index which from set of finite configurations of the form 

w  (wA\{0}) generates in aggregate all finite block configurations. 

The obvious contradiction between block and finite configurations from 

the set C(A, d, ) is shown [141]: If the set of block configurations in the 
aggregate can be generated by a finite set of finite configurations, while 

for finite configurations there is no finite set of finite configurations that 

generate in the aggregate the set C(A, d, ). So, this contradiction is one 
of the fundamental differences between finite and block configurations 

that largely determine their essence. Our results on the above–mentioned 

subject are available in more detail in [113,141,161,182-196]. 

Self–reproducing finite configurations in classical CA–models. If the 
existence problem of UFC characterizes the generating capabilities of 

classical CA–models relative to a set of finite configurations in general, 

then universal reproducibility combines this possibility with structurally 
dynamic aspect of generating of configurations sequences in CA–models. 

The essence of universal reproducibility is that any finite configuration in 

a classical CA-model is self-reproducible in the Moore sense. At that, our 
research in this direction make it possible to establish many of interesting 

relationships between nonconstructability and universal reproducibility 

in the environment of classical CA–models, as well as to solve a number 

of interesting enough problems of mathematical nature. In the future, by 
the self–reproducibility of a finite configuration t in the Moore sense we 

will mean the possibility of generating from it configurations containing 

any predetermined finite number of finite block configurations t . At 

that, it has been shown that if a classical d–CA model (d  1) generates a 

sequence of finite configurations containing in the aggregate all finite 

block configurations from a finite configuration c*, then c* will either 

NCF–1 or its finite configurations-predecessors other than c* will also 

have the same property of reproducibility. We have shown [141–147] 
that classical d–CAs models can have sets of complex enough finite self–

reproducing configurations both in the absence and in the presence of 

NCF–1, NCF–2, NCF, NCF–3 nonconstructability. The detected class L of 
linear classical models having the property of universal reproducibility of 

the finite configurations (any finite configuration is self–reproducible in 

the Moore sense) is most interesting in this regard. The classical model 

d–CA (d ≥ 1) is called a linear CA–model if its local transition function 

σ(n) is defined by the following formula, namely: 
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n
(n)

n1 k k k k k k
k 1

(x , ..., x ) b x (mod a); a,b primes; x ,b A 0,1, ...,a 1 b 0 (k 1..n)


       { },
 

Thanks to the works of a number of researchers, we can imagine a rather 

interesting result [113,155-161,164,182-196]. 

In a classical linear model d-CA (d ≥ 1) each configuration cC(A, d, ) 

is self-reproducible in the Moore sense, i.e., such model will possess the 

property of universal reproducibility of finite block configurations. 

Using a number of our results from [141-147], we were able not only to 

significantly simplify the proof of this result, but also to a certain extent 
to characterize a whole class of similar CA–models, hereinafter called 

linear classical d–CAs models (d ≥ 1). Below, we believe that for models 

of this class, whose alphabet A={0,1,...,a-1} satisfies the condition a = pk, 
where p and k are primes, the following result occurs: 

Classical model d–CA (d ≥ 1) with local transition function σ(n) defined 

as follows: 
man

(n)
n1 2 k k

k 1
(x , x , ..., x ) b x (mod a)



 
 
 

  
 

(there are at least a pair of different integers j, p{1,2, ..., n} such that 

bj, bp ≠ 0; m is an integer or m = 1) possesses the property of universal 

reproducibility in the Moore sense of finite block configurations, where 

a = pt (p is a prime number; t, bj and m are primes or m = 1), bj, xjA = 

{0,1,2, ..., a–1}; j = 1..n. 

We discussed the question of self–reproduction in classical linear models 

d–CA (d ≥ 1) and in some of their modifications rather in detail [113,141]. 
In this connection, the question arises: Whether there are other classes of 

d-CA models (d ≥ 1) that have universal reproducibility of configurations, 

and how could they be described formally? In this direction, it is shown 

[113,141,161] that classical 1–CA models with local transition functions 
defined in a special way do not have nonconstructability of the NCF type 

whereas there is nonconstructability of the NCF–1 type for them. At that, 

the number of such 1–CA models with states alphabet A = {0,1,2,…,a–1} 

and neighboorhood index X = {0,1,2,…,n–1} is equal to  
a 1 n 1a

a
(a 1)

a!
a

 

. As 

it turned out, among such large number of models, many of models were 

found that are different from linear ones, but possess the property of self-
reproducibility in the Moore sense. Meanwhile, the general criterion for 

the presence of self-reproducibility in a classical CA–model in the Moore 

sense is unknown to us for today. Based on many computer experiments 
and a number of our theoretical results on nonconstructability in classical 

d–CA models (d ≥ 1) and on the dynamical properties of the models, we 

formulated the following a rather interesting assumption, namely: 
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The nonconstructability existence of the NCF–1 type in classical d–CA 

(d ≥ 1) models in the absence of nonconstructability of the NCF type in 

these models is necessary, however not enough for the existence of self-

reproducing block configurations in the Moore sense. 

In a certain sense, this assumption could serve as a filter when checking 

CA–models for their self–reproducibility property in the Moore sense. 

Our theoretical studies, based on certain dynamic properties of classical 
1-CA models associated with nonconstructability of NCF-1 type together 

with numerous computer studies, allowed us to formulate the proposal: 

In a classical 1–CA model with the states alphabet A = {0,1,2,3,...,a–1}, 

neighborhood index X = {0,1,2,...,n–1} and local transition function: 

k 1

n
(n)

n1 2 1 1(x , x , ..., x ) x (mod a) x A; k 1..n


   
 

where a is represented in form tgt1 t2
g1 2 j ja p p p ; p ,t primes; j 1..g ,    each 

finite block configuration is self–reproducing in the Moore sense. 
Note, the rate of generation of the required number of copies of a block 

configuration in such linear CAs models is significantly lower than if a 
are prime numbers. It is therefore only natural to draw the conclusion on 

the basis of this proposal: 

In a strictly linear classical model 1–CA with alphabet A = {0,1,...,a–1} 

(a{2,3,...,10}) and arbitrary neighborhood pattern, any configuration 

of a finite block determined in the alphabet A is self–reproducing in the 

Moore sense. 

In particular, a number of procedures programmed in Mathematica can 

be used to computer study this problem. Meanwhile, it should be borne 
in mind that due to insufficiently efficient cyclic expression processing 

algorithms, the Maple is the more preferred system than Mathematica for 

many tasks of computer research of CA-models dynamics [113,155-161]. 
In this context, we considered [161] in a certain sense some generalized 

class of linear classical CA–models characterized by dynamic property of 

universal reproducibility in the Moore sense. A set of similar linear CA–

models forms a semigroup relative to the operation of composition; at the 
same time, saving the self–reproducibility property in the Moore sense. 

At the same time, there are nonlinear classical 1–CAs models for which 
the finite configuration and the inverse to it are self–reproducing in the 

Moore sense. Such models have nonconstructability of the NCF–1 type 

without nonconstructability of NCF type, and the generation of copies of 
both direct and reverse finite configuration is carried out simultaneously. 

Interesting enough examples of classical 1–CAs models of this type were 

obtained and a group of classical 1–CAs models with self–reproducibility 
in the Moore sense of finite configurations and inverse to them have been 



 - 86 - 

established. At the same time, the 1–CA models of this group differ from 

linear classical models [113,141-147,161]. During computer study, many 
interesting results were obtained regarding self-reproducing in the Moore 

sense configurations in the class of linear classical CA–models (d = 1, 2). 

The problem of decomposition of global transition functions in classical 
CA-models is discussed below; we used this approach to create nonlinear 

classical 1–CAs models that have universal reproducibility in the Moore 

sense. Interesting examples of such models can be found in [141,161]. So, 

numerous experiments with a procedure programmed in the Mathematica 
made it possible to formulate a rather convincing proposal, namely: 

A composition of the global transition functions of binary models 1–CA 

with qualification numbers from the set {6, 60, 90, 102, 105, 106, 120} 

have the property of universal reproducibility in the Moore sense. 

Along with studies of classical CA–models with the property of universal 

reproducibility, it is interesting to identify other classes of CA–models 
with a certain general property, interesting from both theoretical and the 

applied points of view, and effectively characterize these classes in terms 

of new or previously studied concepts and categories. Given the question, 

the research of the class of CA–models with symmetric local transition 
functions turned out to be quite interesting. The analysis of classical d–

CAs models (d = 1,2) from this class on the basis of both theoretical and 

computer studies [147] made it possible to formulate a rather interesting 
proposal that in a subclass of this class there is an infinite set of models 

having the property of universal or essential reproducibility in the Moore 

sense. So, a rather interesting proposal seems quite convincing to us: 

Among the classic models d–CA (d ≥ 1) with symmetric local transition 

functions in the presence of NCF-1 nonconstructability and not having 

NCF nonconstructability, there are infinitely many models which have 

universal or essential reproducibility in the Moore sense. 

Moreover, it is shown that the following result occurs [113,146,147]: 

The class of d-CA models (d≥1) relative to the universal reproducibility 

property in the Moore sense is wider than the CA–models class that are 

defined by linear local transition functions and their superpositions. 

Note that the modeling method using the software created in the Maple 

and Mathematica systems, allowed to determine a number of types of the 

classical 1–CA models that have the property of essential reproducibility 
of finite configurations along with some other rather interesting dynamic 

properties of CA–models of this class [113,161]. Analysis of the above 

results, together with a number of theoretical considerations, allows us to 
conclude that there is no linearity of classical CAs models as a root cause 

that forms the basis of universal or essential reproducibility in the Moore 
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sense. More precisely, both universal and essential reproducibility in the 

Moore sense has deeper roots, and their thorough identification is of the 
undeniable interest. In any case, based on the results we obtained, quite 

interesting examples of classical CA–models are obtained, which have 

universal reproducibility and which are different from both the class of 
linear classical models and the wide class of CA–models formed through 

composition of their global transition functions, and having the property 

of universal reproducibility in the Moore sense. Generally speaking, self-

reproducibility in classical CA–models is studied with respect to finite 
configurations, but this phenomenon can also be generalized to the case 

of infinite configurations [10,11,113,141,161,182-196]. 

As part of the study of linear classical CA-models and their modifications 

(in particular, formed on the basis of the composition of global transition 

functions), it became advisable to clarify the effect of the symmetry of the 
local transition functions on reproducibility in the Moore sense in classic 

CA–models. To this end, we identified a group of classical 1–CA models 

with symmetric local transition functions and tried to elicit relationship 
with reproducibility in the Moore sense. Theoretically and based on wide 

computer analysis, it is shown [141,161] that models of this group have 

the property of universal or essential reproducibility in the Moore sense 
and have interesting dynamics of generating copies of self–reproducible 

finite configurations. Thus, it is only natural to assume that the universal 

reproducibility property in the Moore sense in classical CA–models is 

primarily based on some form of complete or essential symmetry of local 
transition functions relative to the main diagonals of structured–designed 

substitution rules that determine local transition functions, along with the 

absence of the NCF nonconstructability in the presence of the NCF–1 
noconstructability, but not their linearity. At that, for the states alphabet 

A = {0,1,...,a} at (a + 1) = ph, where p, h are primes or h = 1, the speed of 

generating copies of the initial configurations of the same length, usually 
depends on the type of symmetry of the local transition functions [161]. 

The general scheme W for organizing symmetric local transition function 
for a classical 1–CA model can be found in [161]. Scheme W presents 

two options for symmetry of local transition functions with respect to the 

two main diagonals of parallel substitution subblocks, which constitute a 
common block of ordered parallel substitutions that determine the local 

transition function of the 1–CA model. The 1–CA model thus defined has 

NCF–1 nonconstructability in the absence of NCF nonconstructability. 
Obviously, the number of different classical models with local transition 

functions defined by the schemes W is 2(a–1)!. Theoretically, and based 

on a sufficiently extensive computer analysis, it is shown [113,141,161, 

182-196] that the following proposal can be formulated: 
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Classical 1–CAs, whose local transition functions are determined using 

relationships of W type, will have essential or universal reproducibility 
in the Moore sense. This result can probably be generalized to the case 

of the d–CAs models (d > 1). 

The generation capabilities of classical CA–models include the problem 

of the existence of periodical configurations. It is shown [141] that if in a 

classical CA–model there are periodical configurations with a minimum 
p–period, their number is infinite, and there are periodical configurations 

of infinitely large size with the same p–period. If periodic configurations 

exist in a CA–model with minimum periods p and q (p ≠ q), then at least 
periodical configurations exist in it with minimum period gs = gs(p, q) = 

LCM(p, q), where LCM is least common multiple p and q. This raises 
two main issues: (1) obtaining upper estimates for the size of minimum 

periods as a function of main parameters of a CA–model as well as (2) 

elucidating the algorithmic solvability of problem of having periodical 
configurations in a classical CA–model, in addition to the trivial case of 

periodical zero configuration. For classical CA–models, the lower limit 

of the minimum period size is set, expressed by the next result: 

There are classical d–CAs (d ≥ 1) models with the Moore neighborhood 

index that possess the periodical finite configurations with a minimum 

period p ≥ 2|gs| – 2, where |gs| is the diameter of a gs configuration. 

It is proven [141] existence in classical 1–CAs of periodic configurations 

of relatively small size with a fantastically large minimum period size. A 

positive solution of the above first question entails the solvability of the 

second question, while the unsolvability of the second, in turn, entails a 
negative solution of the first. For today, both questions remain open even 

for the case of classical 1–CAs models. 

Cellular automata on partition (CAoP), defined above, are of particular 

interest for physical modeling, allowing for fairly simple programming 

of the reversibility dynamics. As for the issues of existence of universal 
configurations (UFC) in CAoP–models, then the following result takes 

place [113,141,147]: Model d–CAoP (d ≥ 1) cannot possess a finite set 

of UFC. An interesting enough picture occurs regarding the existence of 
self–reproducing configurations in the Moore sense in CAoP–models. It 

is shown that the d–CAoP models (d ≥ 1) can have essential or universal 

reproducibility in the Moore sense, and their dynamics will be reversible. 

However, as in the case of classical CA–models, the following negative 
result occurs: There is no 1–CAoP model that can double an arbitrary 

finite configuration defined in the same model states alphabet. Result 

has interesting enough independent appendices [10,11,113,141,183]. 



 - 89 - 

5.4. The complexity problem of finite configurations in classical 

cellular automata 

Complexity in all its commonality is one of the vaguest and intriguing 

concepts of modern natural science. In our opinion, in many ways the 
main reason for this is the intuitive essence of the concept. At the same 

time, we emphasize that the most fundamental problem of development 

is understanding of how the system can itself become more complicated, 
and how complex the original system should be for this purpose. One of 

the difficulties in solving this problem, grandiose in many aspects, is the 

lack of a satisfactory measure of complexity. At that, it is possible that 

for the general complexity concept there is simply no a single approach, 
despite the fact that numerous serious attempts have been made in this 

direction, while the very concept of complexity is essentially multifaceted 

and defined by the sphere of its application. So, studies of the complexity 
concept are extremely desirable and are carried out in various areas. 

For formal modeling of various discrete processes and phenomena in the 
classical CA–models, particular interest is associated with dynamics of 

the finite configurations. Indeed, modeling of some process is presented 

by the dynamics of a classical CA–model (i.e. the appropriate history of 
the initial finite configurations in it). In this context, the question arises 

about the complexity of finite configurations that form the history of the 

development of a certain process or object simulated in the classical CA–

model. Now, three main approaches to the concept definition of "quantity 

of information" are known, that are associated with complexity concept 

of finite objects, namely: combinatorial, probabilistic and algorithmical, 

based on the theory of recursive functions and abstract automata. So, for 
example, within the framework of algorithmic approach, A. Kolmogorov 

determined the relative complexity of a certain object A relative to object 

B by means of the minimum length of a program for obtaining the finite 
object A from the finite object B. At the same time, A. Kolmogorov chose 

their binary numbers in a certain formal numbering as representatives of 

these objects, while as the output program – the program of work of the 

corresponding Turing machine. 

The approach we have proposed to determine the complexity of finite 
configurations based on CA–axiomatics is, by its essence, algorithmical 

too, but differs from the approach of A.N. Kolmogorov. The essence of 

our approach to definition of a complexity concept of finite configurations 

consists in assessment of complexity of generation of an arbitrary finite 

configuration from a primitive configuration cpC(A, d, ) (for example, 

cp = 1  for 1–CAs) by means of finite number of the global transition 
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functions τ(nk) from some fixed set Gf of functions which we will call a 

basic set. To rigorously define the complexity concept, we will need some 

fundamental results related to the dynamics of finite configurations in the 

classical and polygenic CA–models. Nonconstructability problem occurs 
for monogenic and polygenic CA-models. In the second case, the problem 

is known as the completeness problem and is defined as: can an arbitrary 

finite configuration be generated from some primitive configuration by 

a finite sequence of global transition functions of polygenic CA-model? 
This problem attracted the attention of many researchers, who received a 

number of quite interesting results in this direction, while the important 

result of M. Kimura and A. Maruoka completely completes the solution 
to the completeness problem [10,11,113,155,164,183]. 

An arbitrary d–dimensional nonzero configuration cC(A, d, ) can be 

generated from a primitive configuration cpC(A, d, ) with the help of 

some finite sequence of global transition functions τ(nk) of a polygenic 

model d–CA (d ≥ 1). 

So, the completeness problem to a certain extent characterizes the design 

capabilities of polygenic CA–models, proving rather wide capabilities of 

this class of CA–models regarding the generation of finite configurations. 
Meantime, from the above results of M. Kimura and A. Maruoka directly 

follow the following a rather interesting result: 

An arbitrary d–dimensional configuration cC(A, d, ) for a polygenic 

model d–CA (d ≥ 1) can be generated from a certain initial primitive 

configuration cpC(A, d, ) with the help of a certain finite sequence of 

d–dimensional global transition functions τ(nk) of a fixed (basic) set Gf. 

This result is of both theoretical and applied interest, for example, in the 
systems for processing and storing graphic information of various types 

(for example, in image databases), as well as in different systems for the 

encoding and decoding information. On the other hand, it should be noted 
that there is a certain result directly related to our results on the existence 

problem of the UFC for classic CA–models [113,147,154,161,164,182]. 

There are no finite sets of d–dimensional ck configurations from the set 

C(A, d, ) along with global transition functions τ(nk), which are defined 

in the same finite alphabet A, that satisfy the relation, namely: 
(n )

k
k k

k

c C( A,d, ) (A 0,1,...,a 1 ; d 1; k 1..p) 
    

     { }
 

We have presented several options for proof of this result, which can be 
found, in particular, in [113,141]. So, the above results provide a fairly 

strong basis for a rigorous justification of our concept of the complexity 

of finite configurations based on CA–axiomatics along with a number of 
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other results in this direction. In particular: Even polygenic CA–models 

are not finitely axiomatizable formal systems, that is, it is impossible for 
them to determine a finite set of configurations (axioms) from which it 

would be possible to derive the entire set C(A, d, ) by means of a finite 
set of global transition functions (derive rules). Let us now turn to the 

definition of the complexity concept of finite configurations, which is of 

certain theoretical and gnoselogic interest. 

Let Gf be a finite set of d-dimensional global transition functions given in 

some finite alphabet A, by which ones, during finite number of steps, an 

arbitrary finite configuration w* can be generated from some primitive 

configuration cpC(A, d, ), i.e., the following rules exist for outputting 

finite configurations from some primitive configuration cp: 

 
mmm m n31 2

p n1 2 3 j j 1k f
; ; k 1..n; j 1..n 1w* c G


           

 

where mk – the applying multiplicity of global transition functions τkGf 

(k = 1..n). Let's say that a configuration w*C(A, d, ) is generated from 

a certain simplest configuration cpC(A, d, ) in at least r = kmk steps of 

global transition functions τkGf (k = 1..n). So, for classical models 1-CA 

the configuration cp = 1 can be selected as the simplest configuration. 

In addition, two arbitrary finite configurations τi, τjGf are assumed to be 

different (τi ≠ τj) only if there is a relation (cC(A, d))(cτi ≠ cτj). 

If in the above generating chain there are (n–1) pairs of different global 

transition functions <τi, τj> (j = 1..n–1), then we will say that in the above 

generating chain of configurations w*C(A, d, ) from the configuration 

cpC(A, d, ) will exist (n–1) levels Lk, that are defined by the following 

binary signaling function, namely: Lk = If(τk ≠ τk+1, 1, 0) (k=1..n-–1). In 

[161] is diagram (Fig. 10) illustrating the described process of generating 

(optimal output strategy) of an arbitrary finite configuration w*C(A,d,) 

from a simplest finite configuration cp according to the above outputting 

chain. It should be noted that this diagram can serve as a good illustration 

for a number of recearches related to the complexity concept of the finite 

configurations in classical CA–models. Because of this, the complexity 
of an arbitrary finite w configuration can be determined as follows: 

The complexity of an arbitrary configuration wC(A, d, ) (d ≥ 1) based 

on CA–axiomatics is calculated using the generalized formula: 

k

n 1 m
k

kG k 1f

pminSL(w)


 
 

 

where pk is the k-th prime number, and mk are determined based on the 
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above inference chain of the finite configurations of a d–CA polygenic 

model (d ≥ 1). 

Based on this definition, a number of fairly important properties of finite 

configurations were obtained in classical and polygenic d–CA models, 
which characterize them relative to the introduced concept of complexity 

[113,141-147]. Certain results in this direction have a number of rather 

interesting applications in theoretical and applied aspects. Among them, 
in particular, we note the following a rather interesting result: 

For an arbitrary integer d ≥ 1, the set C(A, d, ) of finite configurations 

of d-dimension contains configurations of given complexity relative to 

the finite base set Gf of global transition functions defined in a certain 

finite alphabet A of a polygenic model d–CA (d ≥ 1). In dimension d ≥ 1, 

there are global transition functions τ∉Gf, generating from a given gs 

configuration gsC(A, d, ) of limited complexity, a configuration of 

any pre–defined complexity in the sense of the above–stated complexity 

definition. 

This result states that if the global transition functions constituting the 

base set Gf generate configurations of only limited complexity, then the 

configurations of any complexity can be created by the global transition 

functions not belonging to the set Gf. This result gave rise to many rather 

interesting questions, one of which is the question of the number of finite 

configurations of the same complexity with respect to the given base set 

Gf. The following result provides an opportunity to clarify this issue to a 

great extent: 

There is an infinite number of basis sets Gf of d–dimensional global 

transition functions defined in a finite alphabet A, with respect to each 

of which there are infinite sets Sj of finite configurations of the same 

complexity in the sense of the above–stated complexity definition. 

This result allows us to solve a number of interesting enough questions 

formulated in our works [3,113,141,147]. A fairly detailed study of the 

basic set Gf used in determining the complexity concept of the finite 

configurations in classical CA–models, as well as the properties of global 

transition functions which form a set Gf, allows us to very significantly 

clarify not only new properties of the introduced complexity concept, but 

also provide an effective apparatus for research of the dynamics of CA–

models such as classical, polygenic and non–deterministic in some cases. 

So, in particular, it is very important to study the minimum base set Gf, 

containing the smallest number of the global transition functions τk
(nk). 

Studying the completeness problem in polygenic models, M. Kimura and 
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A. Maruoka presented constructive evidence; however, they did not use 

an optimizing technique. In general, a detailed study of the base Gf sets 

of global transition functions is still absent, while a number of interesting 

results have been obtained with respect to the narrower class of  binary 

1–CAs models (see [3,113,141,147,161,164] and works cited in them). 

There is a minimum basic set Gf of four binary 1–dimensional global 

transition functions τk
(nk); at least one function of them possesses the 

NCF–1 nonconstructability. Moreover, with respect to such set Gf, there 

are infinite sets of finite configurations of the same complexity. 

The method of proving [141] this result proved to be useful in obtaining 

a number of results that have a number of important applications in the 

study of the dynamics of classical CA–models, both by allowing to get 
answers to a number of questions and slightly more deeply revealing the 

essence of the introduced concept of complexity of finite configurations 

based on CA–axiomatics. In this regard, it should be noted, the concept 
of complexity of some algorithm largely depends on both the algorithm 

itself and its specific implementation. For today, there is no traditional, 

more accurate definition. So, the results regarding the assessment of 

complexity for algorithms may well be of a significantly different nature. 
For example, the complexity of the normal Markov algorithm is defined 

by the length of the recording of all its substitution formulas, while the 

complexity of the Turing machine is usually determined by the product 
of the number of states of finite automaton and alphabet symbols of the 

external tape. At that, the complexity of an algorithm implemented in the 

d–CA model (d ≥ 1), it is natural to define by the formula W = d*a*n*p, 

where d – dimension of the model, a – cardinality of its alphabet, n – size 
of the neighborhood index and p – minimum number of parallel rules that 

define the local transition function required for the realization algorithm. 

So, the above complexity concept of finite configurations significantly 
affects the comparative characteristics of various algorithms. Therefore, 

the conceptual basis of the compared formal algorithms needs to be given 

much more attention [10,11,113,141,161,182-196]. 

In researches the complexity problem of finite configurations, we rather 

substantially used the concept of the minimum basic set Gf and some of 

the dynamic properties of the global transition functions composed it. In 

this direction, in particular, the properties of similar minimal bases were 

studied in more detail, given their importance for the research of deeper 
properties of the dynamics of the classical CA–models. For the sake of 

simplicity, we will limit ourselves to the case of binary polygenic 1–CA 

model, the set C(B, 1, ) of finite binary configurations, and binary global 
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transition functions τk
(nk), whose local transition functions are determined 

by the following parallel substitutions, namely: 

000  0 0 0     

001  1 1 1     

010  0 1 0     

011  1 0 0     

100  0 1 1  00  0 

101  1 0 1  01  1 

110  1 1 0  10  1 

111  0 0 0  11  1 

  (a) (b) (c)    (d) 

In view of the assumptions made, there is the following important result 
characterizing the global transition functions for the minimum base set 

Gf for 1–dimensional case of binary polygenic CA–models [141,161]. 

The minimum basis set Gf includes four 1–dimensional binary global 

transition functions τk
(nk), whose local transition functions σk

(nk) are 

defined by the above parallel substitutions; at that, the global transition 

functions constituting the basis set Gf have finite configurations of the 

types according to the table below. 

LTF\NCF NCF NCF–1 NCF–2 NCF–3 ACCF 

(a) – + – – + 

(b) – + – – + 

(c) + + – – + 

(d) + – + + – 

The minimum basis set Gf for 1–dimensional non–binary case consists 

of global transition functions τk
(nk), which possess configurations of the 

types such as NCF and/or NCF–1, NCF–2, and possibly NCF–3 along 

with absolutely constructible configurations (ACCF). 

The issue is discussed in some detail in [141] together with consideration 

of the existence of unconstructability types for global transition functions 

constituting the minimum set Gf of global transition functions. The above 

result achieved some problems from [172]; the result can be used to study 

the complexity problem of 1–dimensional finite configurations in a finite 
alphabet. In particular, based on this result, we can receive the simplest 

justification for the complexity concept of finite configurations that was 

introduced by us for the 1–dimensional binary case. In addition, a result 
of such justification takes the following form, which is of independent 

interest as part of the apparatus for studying classical CA–models. 



 - 95 - 

Any 1–dimensional binary configuration cC(B, 1, ) is monotonically 

generated from the primitive configuration cp = 1  using the global 

transition functions τjk
(nk) from a fixed finite set G. At the same time, 

there is no such finite system {ck, τjk
(nk)} that the following determining 

relation will occur, namely: 
(n )

k
jk k k kkk

2,3 ; 0,1, 2,3 ; k 1..p)c c(B,1, ); c c(B,1, ) (n j   
  
    { } { }

 

As the base set Gf, we can choose a set G of the binary global transition 

functions, relative to which the complexity concept of one–dimensional 

binary finite configurations in classical CA–models is determined. 

It should be noted that this result is generalized to the case of any finite 

alphabet A of the states of an elementary automata of an arbitrary model 

1–CA. Moreover, based on this result, it is possible to obtain the simpler 
evidence (in many cases constructive) of previous results, along with a 

number of other interesting results that concern the complexity of finite 

configurations for the case of binary 1–CA models [141-147]. These and 
related questions are discussed in some detail in [141,161]. Meanwhile, 

the complexity problem of finite configurations in classical CA–models, 

despite our results and other authors' results, has a number of open issues 

along with promising directions for further researches requiring solutions 
from various standpoints (see references in [161]). Let us briefly discuss 

two different approaches to defining the complexity concept of the finite 

configurations in classical CA–models, namely: configuration and block 
approaches, the essence of which is the following. 

First of all, the complexity of a finite configuration means the possibility 

of CA–model or finite set of similar models to generate the set C(A, d, ) 
from one or a finite set of initial finite configurations. From the results 

obtained, it follows that in the arbitrary determination of the finite base 

set Gf, finite configurations of predetermined complexity will still exist 

in the set C(A, d, ) of all finite d–dimensional configurations defined in 
the arbitrary finite alphabet A. 

A completely different picture occurs at definition of block complexity (a 
wider generation possibility) when instead of the finite configurations c = 

hx1x2 ... xnh  [  – zero configuration of an infinite number of symbols 

'0'; xjA, j = 1..n; hA\{0}] we will considere the block configurations, 

i.e. block configurations of the form <x1x2 ... xn> {xjA, j=1..n}. At this 

approach, another situation is quite real. In particular, it is shown [141] 

that there are binary models 1–CAs for which there are infinite sets of the 

finite nonconstructible configurations of NCF–1 type which collectively 

generate the entire set C(B, 1, ) of all finite configurations. 
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In the context of the above, there is a certain interest in the possibility of 

classical CAs to generate the same sequences of finite configurations. In 
this direction there is the following result [141,161,182-196], namely: 

There are CA–models pairs generating the same sequence of the finite 

configurations for a certain finite set of initial finite configurations, 

while the existence problem of the d–CA (d ≥ 1) model generating an 

arbitrary sequence of configurations is, generally speaking, unsolvable. 

Such questions are of undeniable interest due to the fact that the study of 

the dynamic properties of the classical CA–models, as formal objects, is 
based on the study of the sequences of finite configurations generated by 

them. In this regard, the question arises about the intersection of sets of 

sequences generated by two classical CA–models, which is unsolvable. 

The complexity problem of finite configurations in classical CA–models 

is of great importance not only in context of studying both certain formal 
deductive systems, but also in the case of embedding in them developing 

systems of cellular organization and certain their phenomena. Moreover, 

the given problem is most directly related to the problem of studying the 
complexity of self–organizing biological cellular systems, which is quite 

relevant for modern mathematical and developmental biology. 

As is well known, cybernetic study on developmental biology still lacks 

a fairly satisfactory approach to assessing the complexity of developing 

biological systems. Our mathematical approach in this direction can be 
enough fruitful and promising. So, the results obtained along with our 

other results on the complexity problem of finite configurations in CA–

models will not only actually form the problematics and solve a number 

of its main problems in general, but also they allow to formulate many 
open questions and rather promising directions for further study, that are 

of significant independent interest in the theoretical and applied aspects 

of CA–models problematics. 

Our findings on the complexity of finite configurations in the context of 

CA–axiomatics allow us to better clarify the essence of the complexity 
concept depending on the axiomatics used. So, in the axiomatics of the 

classical and polygenic CA–models there are binary finite configurations 

of any given complexity, while in other axiomatics, for example, in the 
A. Kolmogorov axiomatics, all binary words printed on a Turing machine 

on an output tape will be only of limited complexity. Thus, most likely, 

there is no concept of some absolute complexity of finite objects along 
with the complexity concept as a whole; i.e., to a large extent, the concept 

of complexity is pronounced axiomatical in nature. Many results on the 

complexity problem in classical and polygenic CA–models remain valid 

for CAoP–models, having interesting physical applications [113,141]. 
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5.5. Parallel formal grammars and languages defined by the 

classical cellular automata (CA–models) 

The theory of formal grammars (TFG) is the central part to mathematical 

linguistics, providing formal resources for study of the functioning of the 
language. The TFG stands out against the background of other sections 

of mathematical linguistics with a greater complexity of the apparatus 

used, which is similar to the apparatus of algorithm theory and apparatus 
of the general automata theory, with which it has many points of contact 

and intersection. The mathematical significance of generating grammars 

is determined by the fact that they are one of the means of effectively 

determining important sets of words. At the same time, a class of formal 
languages generated using any grammars will coincide with the class of 

all recursively enumerated sets. Of this standpoint, the formal grammars 

of the Chomsky classical hierarchy are of particular interest. Therefore, 
the study of classes of abstract automata that are equivalent to classes of 

formal grammars describing the same formal languages is essential. 

Since TFG is a part of the automata theory, the study of the dynamics of 

CA–models from its standpoint undoubtedly deserves special attention, 

so a number of our works are devoted to these problems. Meanwhile, the 
theory of parallel formal grammars can be effectively used not only in 

creating the theory of parallel programming along with the architecture 

of computing systems of parallel action of new generations, but also in 
creating a linguistic basis for describing the dynamics of various space–

distributed systems of cellular nature. To this end, to study the languages 

generated by classical CA–models, in 1974 we defined a class of formal 

parallel grammars, the so–called τn–grammars [136-138]. At the same 

time, were generally researched τn–grammars, determined by classical 

and nondeterministic models 1–CAs, however similar approach can be 
extended to the d-CA models (d ≥ 2) and some other types of CA-models. 

With this approach, classical CA–models can be considered as a subclass 

of formal parallel grammars (FPG) that do not use non-terminal symbols 
and whose output is carried out in an absolutely parallel way. Grammars 

of this type are similar to the known Lindenmayer systems (L–system), 

they can be quite successfully used for the formal linguistic description 

of the dynamics of different cellular objects and many parallel discrete 
processes and phenomena. At the conceptual level, we studied parallel 

τn–grammars in accordance with TFG traditions resulting in a number of 

FPG characteristics of this class that are useful from many standpoints. 

Informally, τn–grammars are defined as follows. By analogy with basic 

concepts of TFG, the alphabet A of an elementary automaton of classical 
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model 1-CA is considered to be an alphabet of τn–grammar, and its local 

transition function σ(n) defines a set of parallel output rules. In grammar, 

the initial finite configuration of the model determines the axiom, and the 

finite configurations generated from this axiom are the language words 

determined by such parallel τn–grammar. Similarly to the usual formal 

grammar in a classical CA–model, new configurations (language words) 

are output from an initial finite configuration co (axiom) by sequentially 

applying the local transition function σ(n) (output rules). Whereas there 

are two important differences between traditional formal grammars and 

parallel τn–grammars, namely: 

– output rules in a τn–grammar are applied simultaneously in absolutely 

parallel way; 

– terminal and non–terminal symbols do not differ from each other in the 

states alphabet A of the parallel τn–grammar. 

In TFG, some formal language is defined as the set of all terminal words 

generated from an axiom co by grammar output rules. Whereas the L(τn)-

language is defined as the set of all finite configurations (words) that are 

generated from initial configuration (axiom) by means of simultaneously 

applying parallel substitutions defined by the local transition function to 

all symbols of the current configuration (word). We studied τn–grammars 

according to TFG traditions regarding a number of characteristics of this 

class of parallel grammars [113,136-138]. Unless otherwise indicated, the 

parallel τn–grammars and L(τn)–languages below are considered which 

defined by classical models <Z1, A, τ(n), X> with alphabet A = {0,1,...,a-1} 
and neighbourhood index X = {0,1,...,n–1}. 

Studying the closure property of a class of formal languages in relation to 
traditional operations in TFG is a classical approach to the mathematical 

characteristic of this class. There are two basical reasons for considering 

these operations regarding parallel L(τn)–languages [136]. The following 

result determines the behavior of L(τn)-languages in relation to traditional 

operations studied in the classical theory of formal grammars [113,183]. 

The class of languages L(τn) is not closed with respect to operations 

such as finite transformation, homomorphism, iteration, intersection 

union, product and addition, while the class of these parallel languages 

is closed with respect to the reverse operation. 

Meanwhile, the following fact can be attributed to the most significant 

features of τn–grammars: most approaches based on standard methods 

and apparatus of study in TFG do not apply to the class of τn-grammars, 
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assuming the use of new non–standard methods here. For example, the 

use of methods for the theory of recursive functions made it possible to 

solve a number of questions in the theory of τn–grammars [113,155]. In 

particular, it is shown that the dictionary function defined by the parallel 

mapping τ(n): C(A,ϕ) → C(A,ϕ) is primitive–recursive function. Whereas 
there remain a number of issues related to the application of methods and 

results of recursive function theory to the study of the dynamic properties 
of classical CA–models; at the same time, to date, this approach provides 

significant assistance in this direction [113,136-138,141,183]. 

Whereas for the case of parallel L(τn)-languages, such approach allows to 

obtain quite interesting results, in particular, the following can be noted: 

In general, there is no finite set of languages L(τn), whose union forms 

the complement of a certain language of the same class; wherein the 

addition of a finite set of L(τn)–languages cannot be again a language 

of the same class. 

From the results obtained, it follows that the L(τn) family of languages 

shows strong immunity to closure relative to operations, traditional for 

TFG along with other operations that are interesting from standpoint of 

TFG itself and a number of interesting applications. In this regard, it is 

very interesting to compare L–systems and τn–grammars with each other. 

So, the languages of the L–family as a whole relative to L(τn)–languages 

have complete immunity to traditional closure operations. An interesting 
enough discussion of the reason for the differences between L–systems 

and τn–grammars can be found, for example, in [113,136-138,141,183]. 

The relationship was established [141] between the families of parallel 

formal languages L(τn) and L(Tn), determined by means of parallel τn–

and Tn–grammars of classical 1–CA and non–deterministic 1–CA models 

respectively in the Chomsky hierarchy. In order to better understand the 

place of languages L(τn) in this hierarchy, <k, p>–Lindenmayer languages 

were also included [121,141]. In [161], the visual diagram determines the 

relationship between the parallel languages L(τn) and L(Tn), defined by 

the classical and non–deterministic models 1–CA respectively, within the 

framework of the generally recognized hierarchy of the formal Chomsky 

languages; more precisely, the location of the formal languages L(τn) and 

L(Tn) in the generally recognized hierarchy of Chomsky languages. Along 

with the above languages defined by CA–models, the hierarchy includes 
well–known languages such as regular, context–free, context–dependent, 

<k, p>–Lindenmayer languages, recursive and recursively enumerated 



 - 100 - 

languages. Many interesting properties of L(τn)– and L(Tn)–languages 

concerning various operations with them are presented in our works [113, 

136-138,141] and in the references to primary sources contained in them. 

Finding a certain class of recognizers or acceptors that allow languages 

generated by grammars is the traditional approach in TFG. Obviously, a 

good automatic model of a certain family of formal languages gives it a 
fairly strict characteristic. All reasonable models of this type have a finite 

automaton as a control device. Therefore, the family of formal languages 

allowed by similar models must be closed in relation to the intersection 

operation with regular sets of words. Of this standpoint, various classes 

of L(τn) languages were studied and the following result was obtained in 

this direction [10,11,113,136-138,141,183]: 

Class of all parallel L(τn)–languages is not closed with respect to the 

intersection operation with regular sets of finite words. 

So, it follows from this result that it is impossible to find an automaton 
model of acceptors in the standard sense with respect to the class of the 

parallel L(τn)–languages. A study was made of the L(τn)–languages to 

preserve the property of being again the language of the same class when 
narrowing or expanding it with some finite subset S of words from the 

set C(A, 1, ). Together with other results on the nonclosure of the class 

of parallel languages L(τn) regarding a number of important set–theoretic 

operations, the results [136-138] confirm a rather strong nonclosure of 

the class of L(τn)–languages in this direction. This property significantly 

distinguishes the class of L(τn)–languages from the traditional families of 

formal languages considered in the classical TFG. 

One possible way to research the structure of τn–grammars is to impose 

partial constraints directly on the definitions of their components and 

then study the influence of these constraints on the languages generated 
by grammars. A number of results in this direction is presented in [161]. 

So, formulaic sequences of words are examples of L(τn)–languages, in 

which the words forming them in some respect contain a history of their 

development. A L(τn)–language is a formulaic language if an appropriate 

τn-grammar generates a formulaic sequence of words (configurations). It 

can be shown, the parallel L(τn)–language generated by an appropriate 

τn–grammar determined by the linear classical model 1–CA is formulaic 

language [113,141]. This is another kind of general characteristic of the 

generating capabilities of such class of CA–models, which is generalized 

to the case of d-dimension. There are quite a few very complex examples 
of formulaic languages defined by classical CA–models. We studied a 
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number of the formulaic languages. The concepts of formulaic grammars 

and languages introduced are of interest in studies of syntactic structure 

of parallel languages generated by τn–grammars. At that, these concepts 

are quite closely related to the use of classical d–CAs models (d ≥ 1) as a 

modelling environment for various processes, objects and phenomena. 
Therefore, there is a pressing problem of determining the formularity of a 

L(τn)–language; this problem, in our opinion, is unsolvable. In addition, 

despite a number of the results obtained, there is currently a rather scant 

information regarding the formulaic representation of L(τn)–languages, 

so studies in this direction are very desirable from a structural standpoint. 

By introducing parallel τn–grammars, it is quite natural to compare their 

generating capabilities with previously studied formal grammars of other 

types and classes. The results obtained in this direction make it possible 

not only to obtain from many standpoints quite interesting comparative 
estimates of a new class of parallel grammars determined by classical 

CA-models, but also, on the other hand, to evaluate parallel τn–grammars 

and the formal parallel languages generated by them. For example, E.S. 
Shcherbakov [164], dealing with the issue of a mathematical modelling 

apparatus for developmental biology at the cellular level, introduced a 

new class of parallel grammars, which was later called Sb(m)–grammars. 
It has been shown that according to the generating capabilities, Sb(m)–

grammars and τn-grammars are equivalent [138]. Discussion of a number 

of issues concerning the relationship of the τn–grammars with some other 

types of parallel grammars (such as isotonic structural grammars, parallel 

spatial grammars, parallel programmable spatial grammars, etc.) together 

with a number of traditional grammars can be found in [155]. Since the 

class of languages L(τn) is the own subclass of the class of languages of 

A. Lindenmayer, that are generated by L–systems, a number of questions 
arise which relate to a more detailed identification of relations between 

both classes of these formal languages. In particular, we have shown that 

any Lindenmayer L–system is modeled by the corresponding classical 

model 1–CA, but, generally speaking, not in real time, and vice versa. 

Along with parallel grammars defined by classical CAs, we investigated 

a lot of issues related to parallel grammars defined by non–deterministic 
cellular automata. Some of these can be found in [161]. The solvability 

problems play a very important role in the modern mathematics. In this 

regard, we considered the question regarding the solvability problems for 
parallel grammars determined by classical cellular automata. The main 

results in this direction can be found in [113,161,182]. Note, meanwhile, 

that we did not pay such close attention to the issues of τn–grammars. 
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5.6. Modeling problem in classical cellular automata and certain 

related issues 

Simulation in classical d–CAs models (d ≥ 1) is of great theoretical and 

applied interest. A significant number of works containing rather many 
interesting results are devoted to this problem. One of the areas of study 

in this field is related to the modeling of one d–CA (d ≥ 1) by the other: 

real-time modeling; modeling with suppression of certain properties of 
the modelled d–CA, simplification of parameters of the simulated model, 

etc. If in the previously discussed areas of CA–problematics there was 

practically no optimization problem, then in the simulation it is already 

assumed to use a certain optimization. Many researchers have been quite 
actively involved in modeling in classical d–CAs [3,10,11,154,164]. This 

issue has also been considered by us in various aspects. 

First of all, we note two modelling methods in CAs. Like the founders of 

CA–problematics (John von Neumann, S. Ulam, A. Burks, J. Holland, E. 

Codd, E. Banks, H. Yamada, etc.), a fairly large number of researchers in 
this direction applied CA–models directly for theoretical and especially 

applied modelling tasks, providing them with the required functioning 

rules with embeddind in them of simulated algorithms and objects. This 
approach is clearly constructive when, in a desired CA–environment, a 

single simulated task can be reduced to the composition of the subtasks 

that make up it. One typical modeling method of this type is to create a 
number of blocks of unit automata in the CA–environment that perform 

certain functions and interact with each other by exchanging control 

impulses through organized information channels formed by elementary 

automata of the CA–environment. This approach determines the direct 
embedding of the simulated tasks in CAs and in many cases effective. 

Whereas the second approach uses CA–models as certain formal parallel 
information processing systems, presenting a more general level of the 

modeling of the investigated algorithms. In this regard, both modelling 

approaches based on the CA–method can be compared to a certain extent 
with well–known modeling approaches based on Turing machines and 

Markov algorithms or some other formal algebraic symbolic processing 

systems in finite alphabets. If the first approach is most suitable for the 
research of applied aspects of modeling based on d–CAs (d ≥ 1), then the 

second approach forms the basis of a formal research of the constructive 

and computational capabilities of CA–models as certain abstract systems 

for parallel processing of information, which at the axiomatic level will 
provide the properties of homogeneity and locality, while at the program 

level – the reversibility property of CA–dynamics. Both methods can be 
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complementary with a reasonable degree of admissibility. Note, it was 

the second approach that mainly focused our attention in this direction. 

By introducing the concept of modeling one CA–model by another of the 

same dimension, a number of results were obtained, in particular, a result 
useful for modeling tasks in classical d–CAs (d ≥ 1) [113,148,183]: 

A classic d–CA model (d ≥ 1) with neighborhood template in the form of 

hyperparallelepiped of size n1xn2x ... xnd and alphabet A = {0, 1, ..., a–1} 

is simulated in real time 1/n by a model of the same d–dimension with 

alphabet A* and neighborhood template in the form of hypercube with 

edge of length two under the following conditions: 
n dk

k
k 1k 1..d

max n 1n # A* a


  { }
 

A characteristic property of a simulating CA–model is its inheritance of a 

number of basic dynamic properties of the simulated model. The given 

circumstance is quite significant, allowing, first of all, at the theoretical 
level, to investigate the dynamics of classical d–CAs models (d ≥ 1) with 

simple neighbourhood indices, with extension of the previously obtained 

results to more general types of classical CA–models. It is shown, the 
results obtained are characterized by the fact that classical models with 

large neighbourhood template and small states alphabet can be simulated 

by models of the same type with smaller neighbourhood template along 

with large states alphabet, and vice versa. 

Since the classical d–CAs models (d ≥ 1) are parallel words processing 

algorithms of d–dimension in finite alphabets, it is quite interesting to 
compare them with the well–known formal sequential algorithms. One 

approach of this type is to model an algorithm of one type by another, 

and vice versa. In [148,161], we presented the concept of T–modelling 
and on its basis , a number of questions of simulation by classical models 

1–CAs of such well–known computational algorithms as TAG–systems, 

LAG–systems, regular Büchi systems, SS–machines, the normal Markov 
algorithms, Post production systems, etc. were discussed in sufficient 

detail, and vice versa. In the results, along with the application of the T–

modeling principle, an optimizing technique was also used, which made 

it possible to obtain rather optimal relations between the main parameters 
of the modelling and modelled algorithms. In particular, an interesting 

enough consequence arises from simulation of an arbitrary SS–machine 

by a suitable 1–CA model, namely [10,11,113,155,183]: 

There are classical 1–CA models whose sets of the finite configurations 

degenerated into zero configuration are creative. 

So, there are classical CA–models whose sets of the finite configurations 
generated into zero configuration are non–recursive. In this connection, 
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an interesting question arises about the existence of classical CA–models 

whose similar sets of finite configurations are simple or maximum, and 
what are the values of the basic parameters for 1–CA models of this type. 

At the same time, on the basis of the mentioned simulation a number of 

results were obtained on unsolvability of some questions of dynamics of 
classical CA–models [10,11,113,147,161,182-196]. 

From an applied standpoint, modelling of classical d–CA models (d ≥ 1) 
by binary models of the same dimension is of particular interest, firstly in 

computer sciences and in a number of other interesting applications. The 

optimization problems in all areas are quite complex. The above problem 
is not an exception; therefore another method of investigation was used 

to solve it [113,148]. The proposed approach yielded the following result 

having a number of both theoretical and applied applications: 

A classical model d–CA (d ≥ 2) is 1–simulated by the appropriate binary 

CA–model of the same dimension and neighborhood template of size L: 

       
d

d 1
d

1 1 1 1d k d2
k 1

L L L 1 p 1 ; L V log (a 1) 2 ; L L 2 V L




              
 

where A = {0,1,...,a–1} – states alphabet and p1*p2*p3*...*pd is the size 

of minimum hyperparallelepiped, that contains neighborhood template 

of the simulated CA–model, provided the condition log2 log2 4(a–1) ≥ d. 

Therefore, the edge of the d–dimensional neighborhood template of the 

simulating d–CAs (d ≥ 2) under this condition is asymptotically reduced 

by d
2

log (a 1) 2   time with the increase of d–dimension. Previously, the 

non-equivalence of models 1-CAs and d-CAs (d ≥ 2) with respect to some 

phenomena was noted; this also applies to the modeling problem in the 
classical d–CA–models (d ≥ 1). We paid special attention to this point, so 

the modeling method began to proceed from the influence of dimension 

of the classical model d–CA (d ≥ 1) on the optimization factor. Therefore, 

more optimal modeling required slightly different approaches. 

So, for the 1–dimensional case, an optimal technique was proposed that 
takes into account the specifics of the functioning classical models as 

much as possible 1–CAs. Such technique is based on the principle of the 

maximum approximation of the characteristics of simulating models to 

the main characteristics of potentially optimal simulating models. At the 
same time, simulating models whose base parameter values may not be 

achievable, but which can serve as a rather good reference for promising 

researches in this direction and for evaluating the parameter values of the 
previously created simulating models, are considered potentially optimal 

models [172]. In particular, a CA model with neighborhood template of 

size Lopt=(n+1)[log2 a]+2, that, meanwhile, is unattainable, is considered 

as potentially optimal binary simulation model for classical models 1-CA 
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with states alphabet A={0,1,...,a-1} and neighborhood template of size n. 

From standpoint of this assessment, there is an obtaining problem of the 
optimal classical model 1–CA, which is closest to the potentially optimal 

model of the same dimension. We defined simulating binary model 1-CA 

with neighborhood template of size L = (n+1)[log2 a + 1 + ω] + 2, where 

0 < ω < 1 [173]. From the given assessment it is easy to obtain conclusion 

on quite satisfactory similarity of the received simulating model to some 

standard model even at the moderate cardinality of states alphabet and 
size of neighbourhood template of the simulated classical model 1–CA. 

Studies in this direction made it possible to formulate the result: 

A classical d–CA model with states alphabet A = {0,1,2,3, ..., a–1} and 

neighbourhood template which is in the minimum hyper parallelepiped 

p1*p2*...*pd of d–dimension is 1–simulated by the appropriate binary 

classical d–CA model (d ≥ 1)  with neighbourhood template of the size 

L = (p1+1)[log2 a + p1 + λ]*p2*p3*p4*...*pd where λ = 4 for values a ≤ 219 

and λ = 5, otherwise. 

The proof method allows to simulate classical models 1–CAs which have 

a large enough states alphabet and small neighborhood templates quite 

efficiently, using binary classical models 1–CAs with acceptable sizes of 

neighborhood templates. 

In connection with definition of universal computability based on the T–

modeling concept, a rather important question arises about the minimum 

complexity of classical CA–model, that T–simulates the universal Turing 

machine, or in more general statement about the simplest classical 1–CA 

model, that has universal computability. As a measure of the complexity 
of the universal d–CA model (d ≥ 1), it is quite natural to use the d*a*n 

indicator, where 3 parameters determine the values of basic parameters 

of such model: dimension (d), cardinality of states alphabet (a) and size 
(n) of neighborhood template. For classical 1–CA models, the best result 

in this direction was obtained by A.R. Smith, who proved the presence of 

universal models with such values for a*n indicator as: 2*40, 3*18, 6*7, 

8*5, 9*4, 12*3, 14*2. The best result of similar type for universal classical 

models 2–CA was obtained by E. Banks, who proved the existence of the 

universal models with the value d*a*n = 2*2*5 = 20 using the infinite 

initial configuration of the simulating model whereas d*a*n = 2*3*5 = 30, 
otherwise. In turn, A. Podkolzin proved the existence of universal models 

2–CAs with values such as d*a*n = 2*2*9 = 36 and d*a*n = 2*3*5 = 30. 

We showed [147], the universal classical model 1–CA with value a*n = 

14*2 is 1–simulated by a binary model 1–CA with neighborhood pattern 

of size 2[2log2 16 + 1] – 2 = 16, i.e. for a simulating model 1–CA the value 

a*n = 2*16 is permissible, resulting in the following result: 
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There are universal classical 1–CAs models with value indicator a*n = 

{2*16 | 3*11 | 4*8}; such classic models were obtained by us as a result 

of simulation in strictly real time. 

Note that in this direction we have obtained a number of other interesting 
results [161]. At the same time, it is interesting to study the properties of 

such universal models 1–CAs from standpoint of the nonconstructability 

problem. In this direction, we got a rather interesting result [113,148]: 

There are universal classical 1-CA models that have nonconstructability 

of all four types: NCF, NCF–1, NCF–2 and NCF–3. 

A number of aspects of the discussion of modelling techniques, together 
with related issues, can be found in [113,141-148]. The modeling issue 

of classical d–CAs models (d ≥ 1) by CA–models of the same class, but 

with decrease in the dimension of the analogue model, is of significant 

both theoretical and applied interest. [174] presented and analyzed an 
interesting approach to the modeling problem of classical models 3–CAs 

by models 2–CA. A generalization of the approach allows to model d-CA 

(d ≥ 3) by models 2–CA. Meanwhile, this approach does not work for the 
1-dimensional case and does not allow to model an arbitrary 2-CA model 

by the corresponding model 1–CA. Our approach enables the simulation 

of classical models 2–CAs by models 1–CAs of the same type. 

The dynamics of finite configurations in classical 2–CAs are simulated 

by the corresponding classical models 1–CA with the Neumann–Moore 

neighborhood index. A classical 2–CA with the simplest neighborhood 

index and cardinality states alphabet G is simulated by the appropriate 

classical 1–CA with the Moore neighborhood index and the cardinality 

states alphabet 3G2 + 5G + 27. 

Moreover, our study allows to formulate a rather interesting statement: 

Dynamics of finite configurations in classical model d–CA (d ≥ 1) with 

an arbitrary states alphabet are simulated by the corresponding binary 

classical 1–CA or non-binary classical 1–CA with the Neumann-Moore 

neighborhood index. 

Parallel algorithms defined by the classical d–CAs models (d ≥ 1) play a 

rather significant role in the formal description of a number of biological 
development processes and various programmable systems that are based 

on computational homogeneous structures. Due to the undeniable interest 

in solving important problems of designing multiprocessor languages, 

the study of formal language models, which operate strongly in parallel, 
is of particular importance. We determined [155] a wide class of parallel 

algorithms 1–PACA and studied issues of their complexity regarding a 

number of known formal words processing algorithms (configurations). 
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Since in the theory of formal algorithms a lot of attention is paid to the 

complexity of calculations, a result was obtained regarding the class of 
parallel algorithms 1–PACA in this direction [10,11,113,155,183]: 

A partially recursive dictionary function F defined in a finite alphabet 

A, is PACA–computabled in the extended alphabet A* = {b}∪A (bA). 

We analyzed the parallelism issues of the 1-PACA algorithm class and, 

as a result of the analysis, identified the most interesting areas for further 

study: parallelism classes, refinement of internal essence of parallelism, 
selection of algorithms most suitable for effective implementations in the 

computing CA–models, etc.; as part of this, the solution of a number of 

mass problems in the class 1–PACA was investigated [113,141-148]. In 
particular, it is shown that if a two–way stack automaton allows a set of 

finite words in w steps, then a suitable parallel algorithm 1–PACA can 

allow the same set of words in no more than 2w2 steps. So, in terms of 
the parallel algorithms 1–PACA we get a essentially better result on time 

complexity relative to the known standard result. In general, parallel 1–

PACA algorithms for a lot of computational algorithms have been shown 
to produce much better time results than on Turing machines. Meantime, 

compared to the theory of sequential algorithms, the theory of parallel 

calculations supported by CAs is not developed in such detail. 

It is known that simulation in the classical CAs is a multifaceted problem 

that includes such rather complex issues as real–time modeling, optimal 
modeling according to selected optimization criteria, methods to simplify 

the modeling process, obtaining estimates of the complexity of mutual 

simulation of CAs, modeling individual objects, processes, phenomena 

and algorithms, simulating in certain classes of CAs, etc. The simulation 
issues in classical CAs without any additional conditions for simulating 

CAs were above discussed. Now let`s take a brief look at some simulation 

questions when simulating classical CAs are subject to certain constraints 
that have one meaning or another. The issue is significant enough. 

The study of the dynamic properties of classical CAs in connection with 
the type of their local transition functions (LTF) is of undeniable interest. 

We identified two large classes of CAs both with symmetrical (SF) and 

asymmetric (ASF) LTFs and considered a number of questions regarding 
their important properties. In particular, it has been shown the significant 

differences exist with respect to constructive capabilities and sets of the 

nonconstructible configurations in classical CAs with asymmetric and 

symmetric LTFs that undoubtedly needs to be considered in many model 
applications [155]. Quite a few processes have a pronounced asymmetric 

character (although, meanwhile, at their base at the lowest levels there 

may be elements of different symmetry levels) and they can be relatively 
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simply embedded in the classical CAs with asymmetric LTFs. Whereas 

embedding them into classical CAs with symmetrical LTFs requires, at 
times, a significant complication of the basic parameters of the second 

ones (alphabet cardinality, simulation time, neighborhood pattern size). 

In this direction, along with certain our interesting results were obtained 
results by H. Schwerinski and Yu. Kobushi [113,154,161,164,182-196]. 

We would like to once again note that both classes SF and ASF of the 
classical CAs have many specific features, however, based on practical 

considerations, there are two main differences between them: CAs with 

symmetric LTFs appear to us much easier to implement and particularly 
are of interest in terms of different biological interpretations, whereas 

CAs with asymmetric LTFs are generally substantially better adapted to 

simulate different processes and algorithms, i.e. have a greater degree of 

constructive capability for a number of key indicators. As our experience 
shows, for pronounced asymmetric processes, overall, it is impossible to 

quite satisfactorily solve many optimization problems in symmetric CAs. 

When simulating in classical d-CAs (d≥1), the optimal modeling problem 
of various objects, algorithms or phenomena is quite important. At that, 

optimization is usually considered with respect to such basic parameters 

of the modeling d–CA as neighborhood pattern size, alphabet cardinality, 
dimension and simulation time. In this regard, we have obtained a lot of 

rather interesting results, including reversibility issues [141-148,161]. 

A rather important direction in CA–problematics is the study of modeling 

issues of classical CAs under certain conditions, e.g., in the absence of 

one or another of nonconstructability type in the modeling CAs. So, one 

of our approaches allows to simulate classical d–CAs (d ≥ 1), including 
CAs having nonconstructability of NCF type, by classical (d + 1)–CAs 

that do not have nonconstructability of NCF type, allowing to formulate 

an interesting result for a number of applications and theoretical studies. 

An arbitrary classical d–CA (d ≥ 1) with states alphabet A is 1–modelled 

by classical (d + 1)–CA with the same alphabet A; at that, appropriate 

simulating (d + 1)–CA does not have nonconstructability of NCF type 

and preserves history of dynamics of an arbitrary finite configuration 

of the simulated classical d–CA. 

Without disturbing commonalities with the essence of such approach that 

is based on classical 1–CAs can be familiarized, for example, in [161]. 
At the same time, with a detailed description of the simulation algorithm 

itself underlying the proof of this result can be familiarized in [142]. It 

should be noted that the above result along with the T. Toffoli result [164] 
will determine high enough price for such simulation – an increase in the 

dimension of the modeling CA relative to the dimension of the modelled 
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classical CA. It follows from our results [161] that classical d–CA (d ≥ 1) 

within the dynamics of structure–periodic and/or finite configurations is 
simulated by a suitable classical 1–CAs with the simplest neighborhood 

index. In addition, the approach taken in the proof provides simulation of 

dynamics only in classical d–CAs (d ≥ 1) and on the more general case of 
CAs modeling does not apply. In view of this the following proposal may 

be formulated alongside the above result: 

A classical d–CA (d ≥ 1) within the dynamics of finite and/or structure–

periodic configurations is simulated by the appropriate classical 2–CA, 

that does not possess the nonconstructability of NCF type and has the 
simplest neighborhood index X = {(0,0), (0,1), (1,1)}. 

Note that by reversibility, a number of researchers mean the absence of 
mutual erasability for classical CA (nonconstructability of the NCF type), 

while we also mean and the absence of nonconstructability of the NCF–1 

type by reversible CAs; justification of such prerequisite is presented in 
[142,161]. Meanwhile, the approach used by T. Toffoli not only requires 

increasing in the dimension of the simulating CA, but also don`t relieve it 

from nonconstructability of NCF–1 type, not allowing to fully take into 

account the dynamics of such simulating CAs that are reversible to the 
full extent. Moreover, T. Toffoli used some structural approach to create 

reversible CAs, representing the elementary CA automaton by a simple 

logical scheme of three elements. Meanwhile, analysis of this approach 
shows, the reversibility property is achieved due to an implicit increase 

in the states alphabet cardinality and refers to some subset of it [164]. In 

the meantime, real reversibility regarding the expanded alphabet has not 

been achieved. On the other hand, by real reversibility, we will mean the 
dynamics reversibility of classical CAs relative to the set C(A, d, ϕ). Here 

it is appropriate to briefly discuss two levels of reversibility, namely, real 

and formal. Formal level refers to the reversibility of finite configuration 

c*, namely the existence for configuration c*C(A, d, ϕ) of such single 

configuration c'C(A, d, ϕ) irrespective of the set C(A, d, ∞) that there is 

a relation c'(n) = c*. While real level refers to reversibility with respect 
to finite configurations; that is, the existence for a finite configuration с 
such single finite configuration c* of only of the set C(A, d, ϕ), that the 

relation c*(n) = c takes place. Thus, depending on the existence criterion 
of NCF based on the concept MEC or γ–CF, it is easy to make sure that 

the presence of formal reversibility can entail real irreversibility whereas 

the opposite, generally speaking, is wrong. 

Obviously, real reversibility in classical CAs entails formal reversibility, 

while the inverse statement, generally speaking, is incorrect. One of the 
motivations for introducing the concept of the real reversibility of the 
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dynamics of finite configuration in classical CAs is natural requirement – 

the predecessor in the prehistory {c(n)k | k = -1, -2,...} of a configuration 

cC(A,d,ϕ) should be calculated in a finite number of steps. In particular, 

in the assumption of belonging of completely zero configuration co = ` ` 

to the set C(A,d,ϕ), the existence in a classical CA of nonconstructability 

of NCF–1 type makes it really irreversible. From standpoint of two types 

of mutually erasable configurations, one can present the criterion of two 

types of reversibility in classical CAs [113,141-148,161,182-196]: 

A classical d–CA (d ≥ 1) is formally (really) reversible if and only if it 

don`t have MEC (MEC–1) pairs; i.e. it don`t have nonconstructability 

of NCF (NCF and NCF–1) type. 

In connection with this, a rather interesting question arises: Is it possible 

to simulate an arbitrary classical d–CA (d ≥ 1) using reversible d–CA? 
In turn, this question raises a number of related issues that to some extent 
describe the reversibility problem in the classical CAs. In general, similar 

questions constitute the general problem of simulating arbitrary classical 

d–CAs (d ≥ 1) using classical CAs of the same dimension, suppressing 

some properties of simulated CAs. In addition, in relation to the formal 
reversibility characterized by the existence of nonconstructability of the 

NCF–1 type in CAs, a result is obtained that plays a well–defined role in 

studies of the dynamic properties of classical d–CAs (d ≥ 1) [141-148]: 

A classical d–CA (d ≥ 1) is 1–simulated by a suitable d–CA of the same 

type with minimal expansion of the states alphabet; at the same time, 

the simulating d–CA does not have nonconstructability of the NCF–1 

type in the presence of nonconstructability of the NCF–2 type. 

A detailed description of the modeling algorithm underlying the proof of 

this result can be found, for example, in [113,142]. This is much more 

difficult in the case of nonconstructability of the NCF type, that together 
with NCF–1 type forms the basis of the reversibility concept in classical 

CAs. As part of the study of this question, the concept of WM–modeling 

was defined, covering a rather wide class of methods of simulating one 
classical CA with another of the same class and dimension. On this basis, 

a result is obtained that to a certain extent characterizes the possibilities 

of modeling problems and is useful in a number of theoretical researches. 

A classical d–CA (d ≥ 1) cannot be WM–modeled by the corresponding 

reversible CA (in terms of nonconstructability of the NCF type) of the 

same class and dimensionality. 

In the process of research, we have defined the concept of W–modeling, 
which significantly extends the concept of WM–modeling and covers a 

fairly wide class of known and potentially permissible modeling methods 
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in classical CAs. However, and this did not make it possible to positively 

solve the problem of modeling by the appropriate classical reversible CAs 
of the same dimension, as evidenced by the following main result [113]: 

A classical d–CA (d ≥ 1) cannot be W–modeled by reversible d–CA (in 

the sense of absence for it the nonconstructability of the NCF type) of 

the same class and dimensionality. 

Meanwhile, using the results of K. Morita, J. Dubacq and a number of 

others [164] together with ours, it is possible to prove a rather interesting 

result [10,11,113,161,182-196]: 

An arbitrary classical d–CA (d ≥ 1) can be simulated by an appropriate 

formally reversible classical 1–CA. 

Our other results on the multi–aspect modeling problem in CAs including 
mutual modeling with suppression of certain properties of simulated CAs 

can be found in our publications [113,141-148,155,161,182-196]. 

The reliability problem of CAs of this type, consisting of real elementary 

automata, relates to some extent to the general problem of simulation in 

classical CAs. Meanwhile, it has so far been assumed that d–CAs (d ≥ 1) 
are a purely abstract model, whereas in real conditions the work of CA–

models can undergo various kinds of disorders, which can lead to rather 

undesirable consequences. This poses a rather important problem for the 
CA organization, which would, in many important cases, correct possible 

failures that occur during the operation of real CA–models. We will call 

a CA–model self–correcting if the model during operation has the ability 

to eliminate the consequences of failures in the operation of elementary 
automata and their connecting information channels. We have proposed 

some methods for organizing the functioning of real CA–models based 

on self–correcting computing structures [10,11,113,141,183]. 

Further research into the self–healing problem of the real CA–models of 

different types is of considerable applied and cognitive interest, and this 
direction should be given appropriate attention. The study of the stability 

of real CA–models to failures of various kinds can quite be attributed to 

this direction. At the same time, the proposed approaches are not only 
formal in nature, but also allow us to consider the reliability problem of 

cellular systems of various nature from formal standpoints [141]. The 

proposed techniques for correcting real CA–models are of particular, first 

of all, theoretical interest, bearing the features of a certain common basic 
approach, while for practical application they are perhaps not effective 

enough taking into account the use of the necessary resources. Therefore, 

to solve real practical problems, it is necessary to develop more effective 
methods for correcting failures [10,11,113,148,161,182-196]. 
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5.7. The decomposition problem of global transition functions 

in classical cellular automata (CA–models) 

The decomposition problem of global transition functions (GTFs) for 

CA–models is of considerable theoretical and applied interest. The goal 
of a GTF decomposition is to identify effective procedures which allow, 

based on a predetermined GTF, to determine the composition of simpler 

functions whose composition is equivalent to the initial GTF. The given 
problem is also directly related to issues of constructive complexity, that 

play a rather important role in specific implementations of CA–models of 

various kinds. The first setting and the first results on the decomposition 

problem go back to S. Amoroso and J. Epstein [164], who proved that in 
the set of all binary 1–dimensional GTFs there are functions that are not 

represented as a composition of finite number of the simpler functions of 

the same type and class. Then, J. Buttler, using a rather simple numerical 
procedure, showed that in the set of all GTFs of d-dimension (d ≥ 1) there 

are also functions which are not represented as the so–called minimum 

compositions from a finite number of the simpler GTFs from the same 
set of functions [164]. In certain our works, the decomposition problem 

has been further developed [113,141,155-161]; the results obtained in 

this direction made it possible to consider this problem from new rather 

interesting standpoints. First of all, the decomposition problem relates to 
some extent to the complexity problem of global transition functions: 

Can an arbitrary global transition function τ(m) be represented by some 

composition of a finite number of the simpler GTFs of the same class 

and the same alphabet? 

At that, we will say that a global transition function τ(n) is simpler than a 

global function τ(m) (both global functions are defined in the same finite 

alphabet and the same dimension) if n < m; n < m defines the relationship 

between the number of automata maked up the neighborhood templates 
of both CA–models. It turned out that problems such as complexity of 

the finite configurations, completeness problem for polygenic CAs and 

decomposition problem of global transition functions are rather closely 

related, presenting a promising and extensive field for further researches. 
It is easy to verify that in the general case, an arbitrary global transition 

function τ(n) cannot be represented by a composition of finite number of 
the simpler global transition functions of the same class and in the same 

finite alphabet. Our first results regarding the decomposition problem are 

based on earlier results on nonconstructability problem in classical CAs 

and solved the problem for classical 1–CAs [145]. The main result in this 
direction was to prove the existence of 1–dimension GTFs with arbitrary 
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neighborhood indices and finite states alphabets for which decomposition 

problem has the negative solution. 

In general, the decomposition problem of global transition functions τ(n) 

(d–DPF; d  1) is defined by the possibility of representing an arbitrary 

global transition function in the form of a composition of finite number 
of the simpler functions of the same class and in the same alphabet A = 

{0,1,2,3, ..., a–1}, namely: 

p31 2
(n )(n )(n ) (n )(n)

j... (n d 1; n n; j 1..p)        
 

wherein the global transition functions τ(n), τ(nj) (j = 1..p) have the same 
dimension and are defined in the same alphabet; in addition, the multiple 

occurrences in the above representation are also quite allowed for global 

transition functions τ(nj). For the case of 1–dimensional global transition 

functions τ(n) the relations n = ∑j nj – p + 1 and (∀j)(nj{2,3,4, …, n–1}); 

j = 1..p exist for the above representation. It is shown [113,146,177] that 

an arbitrary global transition function with respect to representability in 
the above form satisfies one of three opportunities: (1) it don`t has the 

above representation, (2) has a single representation and (3) has more 

than one representation. In particular, if a global transition function has a 

single representation, then all global transition functions which make up 
such representation will have negative d-DPF solution. This is one of the 

easiest approaches to proving the existence of negative d–DPF solutions. 

Taking into account the finite number of global transition functions in the 
representation and a finite number of these functions in the case of finite 

alphabet of states, it is easy to show, for example, based on the search 

method (albeit very bulky), that it is possible to solve the decomposition 
problem of an arbitrary global transition function on simpler functions, 

including the case of uniqueness of the representation of GTFs. 

Meanwhile, it is likely that with the advent of quantum supercomputers, 

it will be necessary to reconsider the temporal complexity of a number of 

problems (by transferring them from a class of unsolvable to a class of 

solvable or difficult to solve), currently unsolvable due to the required 
time resources; the same applies to a number of applied problems from 

theory of classical cellular automata – the main purpose of our studies. 

Along with d-DPF, a special representation of global transition functions 

in the form of a composition of finite number of simpler functions is of 

particular interest. By special we will mean any representation of a global 

transition function τ(n), provided that the original function and functions 

τ(nj) which make up its decomposition are selected from a given class of 
functions with imposition on them of some special restrictions that have 

a certain interpretation. In particular, we are naturally interested in the 
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relationship between the nonconstructability properties of an arbitrary 

global transition function and global transition functions that compaund 
its representation. In this direction, we obtained a number of results [113, 

141,146,157,179,183], in particular, shown: 

A global transition function τ(n) set in the finite alphabet has the NCF 

nonconstructability if and only if at least one global transition function 

τ(nj) in its representation will have NCF; if at least one global transition 

function τ(nj) has NCF–1, their composition τ(n) will have NCF or/and 

NCF–1 nonconstructability. There are global transition functions other 

than linear ones which have universal or substantial reproducibility in 

the Moore sense of finite configurations; the same property will kept 

when their composition is with linear GTFs. Such compositions with 

linear GTFs may include GTFs that do not have nonconstructability of 

NCF type in the presence of the NCF–1 nonconstructability. 

A lot of results in this direction can be found, for example, in [113,161]. 

It also presents a number of our results on the decomposition of special 

global transition functions in classical CAs. A one–dimensional case was 
considered in sufficient detail, including a number of interesting special 

classes of one-dimensional CAs. Of the d–dimensional CAs (d  2), in 
particular, a class of CA–models with refractority, having bio–medical 

interpretations and used to research the problems of recognizing images, 

excitable media, properties and topology of digital figures, etc. was rather 
detally investigated. The decomposition problem in the class of all CAs 

(d  2) with refractority has been shown to have the negative solution. It 
suggests a negative d–DPF solution in the class of all global transition 

functions with refractory, regardless of excitation threshold and refractory 

depth. Other rather interesting special representations of global transition 
functions by the composition of a finite number of simpler functions are 

considered in our works [10,11,113,141,142,157,179,183]. 

Above we have discussed certain questions of decomposition problem 

relating to a number of special classes of global transition functions, now 

we will consider some approaches to solving the general decomposition 
problem which are based on the application of the results and methods of 

the theory of functions of algebra logic, a-valued logics, formal apparatus 

of group theory, algebras and semigroups, as well as on a rather essential 

generalization of the method of solving d–DPF (d  1) based on the study 

of the nonconstructability problem in classical CAs. Along the way, the 
decomposition problem of GTFs is found to be rather closely related to 

the complexity problem of finite configurations in classical CAs and to 

the completeness problem for polygenic CAs. Approaches and methods 
for d–DPF solution are of interest in the study of some other CAs issues 
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and a number of their important enough applied aspects. 

First of all, to solve the decomposition problem we proposed an approach 

[179], based on the use of the C. Shannon function, that was introduced to 

assess the complexity of implementing the functions of algebra of logic. 
On the other hand, in the general case of states alphabet of a classical CA, 

it is impossible to directly generalize the above results regarding binary 

GTFs, so we are forced to first turn to a–valued logic (a > 2). Based on 
our approach used a–valued logic, similarly to the binary case, negative 

solution to the decomposition problem was obtained in the case of global 

transition functions as a whole [113,148,183]. In addition, it is shown: 

Among classical d–CAs (d ≥ 1) defined in the states finite alphabet and 

with arbitrary neighborhood indexes, there is an infinite set of global 

transition functions for which d–DPF has negative solution. 

A similar result is rather easy to obtain based on our results above on the 
complexity problem of finite configurations in classical d–CAs (d ≥ 1). 

The impossibility of a positive d–PDF solution for an arbitrary global 

transition function allows to naturally introduce the complexity concept 
for the global transition functions themselves, similar to the case of finite 

configurations in classical d–CAs (d ≥ 1). Of analysis of the complexity 

concepts of finite configurations and GTFs in classical CAs, it follows 
that this is based on the inability to exist in them some finite base sets for 

finite configurations and GTFs, respectively. Moreover, in studies of the 

decomposition problem, some algebraic methods can also be used [141]. 

It is known that global transition functions that implement mapping the 

configurations of the set C(A, d) to itself form some semigroup relative to 

the composition operation; let L(a, d) denote the semigroup of all such 

global mappings of d–dimension τ(n): C(A, d) → C(A, d). It can be shown 

that L(a, d) is a non–commutative semigroup with a group identity (for 

complete certainty, defined by the relation τ(2)(x, y) = x), that leaves any 

global transition function τ(n) unchanged within the leading variables. So, 

the study of the composition properties of global transition functions can 
often be reduced to the study of the appropriate properties of a suitable 

semigroup L(a, d). It is shown [179] that the semigroup L(a, d) contains 

one maximum group G, where maximum group is such group which is 
contained in the semigroup L(a, d), not expandable by supplementing G 

with new elements from the set L(a, d)\G. Considering the set G(d) of all 

d–dimensional GTFs whose respective global mappings τ(n): C(A, d) → 

C(A, d) are one–to–one, it can be shown that the set G(d) forms a group 

relative to the composition operation. The result allows us to apply group 

methods of studying the dynamics of classical d–CAs (d ≥ 1), that is, to 
reduce the study of a number of properties of such classical models to the 
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study of the appropriate properties of group G(d), as well as subgroups 

that make up it. It is shown that the semigroup of mappings L(a, d) can be 
decomposed into combination of the disjoint semigroup L*(a, d) and the 

maximum group G(d), i.e., there are the following defining relations: 

L(a, d) = L*(a, d)∪G(d)    &    L*(a, d)∩G(d) = E 

where E – a unit group consisting of only one unit element – semigroup 

identity. The solution of many issues concerning the possibilities of the 

semigroup L(a, d) can be reduced to solving the relevant issues for group 
G(d) or semigroup L*(a, d), which we did. Of our study on this way, it is 

easy to obtain an important consequence: If the group G(d) contains an 

infinite number of closed subgroups, then it cannot have a finite basis. 
The result can be transferred to the case of arbitrary algebraic semigroups. 

It is shown [10,11,113,142,157,161] that set of parallel global mappings 

τ(n): C(A, d) → C(A, d) can be represented as a combination of 7 disjoint 
subsets having the following basic defining properties, which relate to a 

component of parallel global mappings – τ(n): 

G1: GTFs τ(n) possess the nonconstructability of 4 types NCF, NCF–1, 

NCF–2 and NCF–3 at the same time; 

G2: GTFs τ(n) possess the nonconstructability of the NCF (NCF–3) and 

NCF–1 types without nonconstructability of the NCF–2 type; 

G3: GTFs τ(n) possess the nonconstructability of the NCF (NCF–3) and 

NCF–2 types without nonconstructability of the NCF–1 type; 

G4: GTFs τ(n) possess only nonconstructability of the NCF–2 type; at 

that, the global mappings defined by such GTFs are not one–to–one; 

G5: GTFs τ(n) possess only nonconstructability of the NCF–1 type; 

G6: GTFs τ(n) have only nonconstructability of the NCF (NCF–3) type; 

G7G6: GTFs τ(n) define parallel global one–to–one mappings of the 

form τ(n): C(A, d) → C(A, d) (d ≥ 1). 

It can be shown [10,11] that with respect to the composition of the sets, 

Gk (k=1..6) form non–commutative semigroups, and the set G7 forms a 

group. Thus, the semigroup L(a, d) of all parallel global mappings τ(n): 

C(A, d) → C(A, d) in classical d–CAs (d ≥ 1) can be presented as a certain 

combination of a finite number of disjoint semigroups and a group, i.e. 

L(a, d) = ∪k Gk (k=1..7). Analysis of the structures of the semigroups Gk 

(k=1..6) and the group G7 allowed to formulate a rather interesting result 

related to the decomposition operation of the semigroup L(a,d) of parallel 

mappings for classical d–CAs (d ≥ 1): 

The semigroup L(a, d) of all parallel mappings τ(n): C(A, d) → C(A, d) 

defined by the classical d–CAs (d ≥ 1) can be represented by combining 
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six disjoint subgroup Gk (k = 1..6), which do not have finite generative 

systems, and 1 the maximum group G(d). The sets Gh (h = 4..6) relative 

to the semigroup L(a, d)\G(d) are isolated subpolugroups. 

Further researches have shown that the structure of the G(d) group itself 

remains somewhat open. A more detailed study of binary classical 1-CAs 

to establish one-to-one mappings Gk: C(B, 1) → C(B, 1), that differ from 

identical ones, was rather successful. The following result presents the 

best for today, which is of some theoretical interest, in particular, in the 
formal researches of classical 1–CAs [10,11,113,141,183]. 

Semigroup L(a, 1) of 1–dimensional global mappings τ(n): C(A, 1) → 

C(A, 1), (a ≥ 3), defined by a classical 1–CA, it is presented in the form 

of union of 6 in pairs nonequivalent not intersecting Gk subsemigroups 

(k = 1..6), which do not have finite generating systems, and 1 maximum 

group G(a), which is a combination of the subgroup T* of all identical 

mappings τ(n)
o (n ≥ 2) with finite system of generatrices P(a, 2) together 

with the relation τ(n)(a–1)! = τ(2)
o and maybe subgroups of one–to–one 

mappings other than the above mappings. 

That result, along with some others, suggests the need to continue studies 
in this direction, given the full variety of possibilities already for binary 

1-CAs. Meantime, despite the results obtained, they do not give complete 

solution to the structure of even the G(1) group which participates in the 
specified representation of the semigroup L(a, 1) of 1-dimensional global 

mappings. In addition, from the results obtained, it follows that the group 

G(d) in the representation of the semigroup L(a, d) will have to contain 

non–trivial identical one–to–one global mappings, while for each of the 

six subgroup Gk (k = 1..6) defined by the representation L(a, d), d–PDF, 

generally speaking, will have the negative solution. 

Note, based on the concept of infinite mutually erasable configurations 

(∞–MEC), one can define another approach to solving the decomposition 
problem of global transition functions in classical CAs. 

Two configurations c1, c2C(A, d, ∞) – couple of infinite mutual erased 

configurations (∞–MEC) in only case when for them the relationship 

c1τ(n) = c2τ(n) = c3C(A, d, ∞) ≠  

where c1  c2 and `` – completely zero configuration of space Zd which 

according to the above postulate belongs to the set C(A,d,ϕ) takes place. 

We have identified one useful class E# of global transition functions τ(n) 

of subpolugroup G4 whose local transition functions E(n) will be defined 

below. This class of global transition functions due to specific dynamic 
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properties is of quite certain interest in study, regardless of the d–PDF. 
(n)

n n1 2 j n 1
(n)

n1 2 j n 1
(n)

n n1 2

E (x , x , ..., x ) 0 , if x 0, x x 1 ( j 1..n 2)

E (x , x , ..., x ) 1, if x 0, x 1 ( j 1..n 2,n)

E (x , x , ..., x ) x , otherwise





     

    



 

Now, based on the analysis of sets of pairs ∞–MEC for global transition 

functions from set E#, can be established the exact appearance of similar 

pairs for each function from the class E#, allowing to prove the result: 

For an arbitrary integer n ≥ 3, the global transition functions E(n) from 

class E# have, in general, the negative 1–PDF solution. 

This result allows to obtain a constructive negative 1–PDF solution that 

have certain interesting applications. Some of them are considered in a 
different context [11]. On the basis of a certain class of global transition 

functions τ(n) of G4, that is defined in a special way and whose functions 

satisfy the appropriate conditions, using a rather detailed analysis of the 

structures of pairs ∞–MEC existing for them, it is possible to formulate a 

result sufficiently useful for some of applications of a theoretical nature: 

Subpolugroup G4 of univariate binary global transition functions τ(n) 

has no a finite basis. 

It should be noted that the proposed method of solving 1–PDF, based on 
the concept of ∞–MEC, is a significant generalization of the method of 

solving the decomposition problem of global functions based on results 

on the nonconstructability problem in classical CAs [10,11]. We studied 
the structural features of the ∞–MEC in sufficient detail with  obtaining 

the accompanying results [10,11,113,141,146,161,179,182-196]. 

Based on an algebraic approach which is of interest to the mathematical 

theory of CAs, along with its many applications, we have addressed some 

issues of investigation of both the generalized problem (d–GPDF) and 
the general problem (d–PDF) of the decomposition of global transition 

functions. First of all, we note the fundamental difference between the 

general problem and the generalized one: the generalized decomposition 
problem differs from the general problem in that the decomposition 

allows the use of global transition functions with neighborhood patterns 

of the same size as the original global transition function. Moreover, 

both of these decomposition problems are not equivalent – for certain 
global transition function, d–GPDF may have a solution, while for d–

PDF it is not. In [10,113,179] provides interesting examples of this type. 

Meanwhile, d–GPDF can well be considered as a kind of private case 
that in certain cases that is of interest. To analyze binary one-dimensional 

both classical and non-classical CAs, the PDF procedure programmed in 

Maple system was used. Calling PDF(m) returns a list of format {[a,b], 
[c,d,g],...,[e, j], [l, s]}, whose subscriptions with 2 and/or 3 elements will 
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define the numbers of global transition functions that make up all valid 

compositions of the simpler global transition functions for the original 
global transition function with the given number m, if such compositions 

exist; otherwise, the procedure call returns the empty list. In [10,11,113] 

presents a number of results on the collected by the procedure statistics. 

So, based on the use of a certain modification of PDF procedure, a list of 

the numbers of all 1–dimensional binary global transition functions with 
the neighborhood index X = {0,1,2}, which do not have compositions of 

simpler global functions is obtained. A fairly simple calculation shows 

that the proportion of CAs with this property is 0.76, that is, more than 
3/4. So, of all classic one–dimensional binary CAs with neighborhood 

index X = {0,1,2}, which possess a universal reproducibility attribute in 

the Moore sense of finite configurations, only three with numbers 60, 90, 

102 can be represented as compositions of two simpler functions with 
numbers {[7,4], [4,7], [13,7], [10,13]}, {[7,7], [10,7]}, {[10, 11], [7, 6], 

[6, 7], [11, 7]}, respectively. In addition, global linear transition function 

with the number 105, cannot be represented in the form of a composition 
of two simpler global transition functions. The rather significant potential 

for the decomposition problem of global functions is ensured by the use 

of global transition functions in the same alphabet along with unrelated 
neighborhood indices. And first of all, this applies to the case when the 

decomposition problem is considered relative to the given subclasses of 

global transition functions, and in this regard we have obtained a number 

of interesting enough results. With the class of linear and strictly linear 
global transition functions, numerous computer experiments were carried 

out in terms of studying the decomposition problem, using rather simple 

procedures programmed in Mathematica. Note, that theoretical results 
using numerous and comprehensive computer experiments performed in 

Mathematica made it possible to formulate useful proposals. In particular, 

among the global functions of d–dimension defined in the finite alphabet, 

at least 4 disjoint sets of global functions can be distinguished regarding 
the possible solution of d–PDF (d ≥ 1) [10,11,148,161,179,182-196]: 

♦ global transition functions that do not have a positive d–PDF solution; 

♦ global transition functions with positive d–PDF solutions; 

♦ global transition functions with a single positive d–PDF solution; 

♦ global functions having a single positive d–PDF solution consisting of 

a degree of some simpler global transition function (d ≥ 1). 

A slightly different approach was used by us on the basis of I. Zhegalkin 

polynomials. From the theory of Boolean functions it is known that the 
Boolean function can be represented by the Zhegalkin polynomial, i.e. a 

binary local transition function σ(n) can be uniquely represented by the 
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appropriate Zhegalkin polynomial from n variables of degree no higher 

than n. In a more general statement, it should be borne in mind, binary 
CAs are most suitable for study in the Zhegalkin algebra, which is a type 

of algebra of logic [10]. In addition, the Zhegalkin algebra allows a quite 

natural generalization in the case of a–valued logics, if a is the degree of 
a certain prime number. This allows to use the apparatus of polynomial 

theory over finite fields quite efficiently to study multi-valued logics and 

classical d-CAs for the case of more general types of finite alphabet (d≥1). 

A number of discussions in this area can be found in [10,11,141,148]. 

In particular, based on the study of class G of local transition functions 
presented in the form of polynomials of a special form over the set field 

A together with the class of all binary local transition functions presented 

by I. Zhegalkin polynomials, the following basic result can be obtained: 

For primes a and n, not every local function σ(n)G can be represented 

in the form of a superposition of a finite number of simpler functions 

in the same alphabet A. For each prime number n ≥ 3, the binary local 

transition functions σ(n)G cannot be represented in the form of some 

superposition of the finite number of simplest local transition functions 

σ(j)G in the same binary alphabet A. 

From the evidence follows that, based on the polynomial representation 

of local transition functions σ(n) by polynomials modulo a, except for the 
case of the composite number a, quite it is possible to obtain constructive 

solutions to the decomposition problem of the global transition functions 

without using the concept of basis. In addition, on the basis of this, it is 
easy to prove the absence of a finite basis for a set of all global transition 

functions (n) classical d–CAs (d ≥ 1). In this way, you can obtain some 
general criterion for solving the decomposition problem for an arbitrary 

global transition function (n) defined in the finite alphabet A={0,1,...,a–1} 
(a is a prime number) [10,11,148,161,182]. In particular, our research in 

this direction gave a rather unexpected result: 

The proportion of all global transition functions of d-dimension, which 

are defined in an arbitrary alphabet A which allow positive solutions of 

d–PDF and d–GPDF, is zero (d ≥ 1). 

So the d–PDF study, instead of proving the existence of the negativity of 
its solution, turned into a search for its rather rare positive solutions. At 

last, from our results on the study of d–PDF and d–GPDF, it is possible 

to establish that among all d–dimensional global transition functions (n) 

(n ≥ d + 1) defined in Ap alphabet, a certain hierarchy of complexity of the 

global transition functions (n) with respect to the decomposition problem 

can be determined. 
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Let us say that an arbitrary global transition function (n) belongs to 

the s–level of complexity [s < n; the notation: (n)L(s)] if and only if 

representations exist for the given global transition function (n) in the 

following form: 


p

np p p kn n n p p p(n) 1 2 3
1 2 3 1k k

p p
... ; n d 1; s min max n , ...,n p 1..m

 
 
      

       
       

  
     

 
     

 

that is, for a global function (n), the PDF has a positive solution. If the 

PDF for the global transition function (n) has a negative solution, then 

such global transition function is assigned to the complexity class L(n). 

Based on our results and definitions, the following asymptotic relations 

can be obtained, having rather many quite important applications in the 
problems of classical cellular automata [10,11,148,161,183], namely: 

   
a

s

s
s 2 # L(s) 0 ; Lim # L(s) a 1


   

 

where a is a prime number and #G is cardinality of the finite set G. We 

have shown that there is the next rather important result of the solvability 

of the complexity levels of global transition functions in classical CAs, 
which is primarily of theoretical interest in the study of the algorithmic 

properties of the dynamics of classical d–CAs as conceptual models of 

spatially distributed dynamical systems (d ≥ 1): 

The problem of determining whether an arbitrary d-dimensional global 

transition function (n) given in an alphabet A belongs to the s-difficulty 
level (s ≤ n) is, in general, is algorithmically solvable. 

Thus, based on the introduced concept of complexity for global transition 

functions relative to d–PDF (d–GPDF) (d ≥ 1), you can obtain interesting 

characteristics of global transition functions (n). It follows from results 

that we essentially used the algebraic properties of the finite alphabet Ap, 

since a local transition function can be unambiguously represented by a 

polynomial modulo a of maximum degree n*(a–1) over the field Ap, and 

vice versa. While in the case of the Ac alphabet, not every local transition 

function given in the alphabet of this type can be presented in polynomial 
form. Namely, the following main result occurs [10,11,113,183]: 

For an arbitrary finite alphabet Ac = {0,1,2, ..., a–1} the fraction (W) of 

local transition functions σ(n), that are defined in the states alphabet of 

this type and which allow polynomial presentations modulo a satisfies 

the following relation:
n n n na 4 a (a 2)1 a W 1 a  

  . 

It follows from the result – for the case of a composite integer a, almost 

all local transition functions σ(n) defined in the Ac states alphabet cannot 
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be represented in polynomial form modulo a for sufficiently large values 

n and/or a. In this regard, the following question is naturally formulated: 
Is it possible to determine such algebraic system in which a polynomial 

representation can be defined for the local transition function defined in 

the Ac alphabet? As a result of the analysis, we have proposed one rather 

interesting example of an algebraic system, in the environment of which 

almost all local transition functions determined in the Ac alphabet can be 

uniquely represented by polynomials modulo a. Based on a number of 

our studies, the following rather interesting result was obtained regarding 

d–PDF and d–GPDF in the case of the Ac alphabet of classical d–CAs; 

this result is of significant theoretical interest for CAs issues in general 

along with a number of applications [10,11,113,141-147,183]: 

Relative to almost all global transition functions determined in the Ac 

alphabet, whose local transition functions allow representations in the 

form of polynomials in the above form, both d–PDF and d–GPDF will 

be both equivalent and algorithmic solvable. 

So, the above results of the d–PDF and d–GPDF study extend to almost 

all global transition functions defined in the Ac alphabet. Whereas so far 

we cannot extend them to the general case of alphabet A, which requires 
more research. Along with the above algebraic method, that are based on 

polynomial representations of local transition functions, methods and 

results of algebraic theory of a–valued logics, for example, iterative Post 
algebras, can be successfully used for their formal studies [10,11]. In this 

regard, it is interesting to identify and research the class of certain non–

traditional algebraic systems within which acceptable representations of 
local transition functions defined in the arbitrary alphabet A are possible. 

Finally, the research of various sets of global transition functions closed 

relative to the composition operation is of a certain interest from many 

standpoints. In this regard, we investigated a number of similar sets that 
are interesting from an applied standpoint in the context of dynamic and 

extreme capabilities of classical CAs. In our works, you can find many 

interesting examples of using some other operations on global transition 
functions, as well as a more detailed discussion of PDF/GPDF [10,11]. 

In this we conclude a certain conceptual presentation of TRG studies in 
the theory of mainly classical cellular automata, moving to our point of 

view on the formation of this scientific direction. Naturally, our point of 

view is to a certain extent subjective, but it is based on our many studies 
in the early stages of the development of the theory of cellular automata. 

In addition, a number of serious studies on the historical aspects of CAs 

are well consistent with our standpoint on this subject. 
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5.8. The main stages of the cellular automata theory formation 

At the end of the chapter and this book as a whole, we will present our 

standpoint on the history of cellular automata, given our familiarity with 
the problematics in the early stages of its formation as a certain separate 

direction. Today, the problematics of cellular automata (CAs, CA-models) 

is rather well advanced, being quite independent direction of the modern 

mathematical cybernetics, having own terminology and axiomatic at the 
existence of broad enough domain of various appendices. In addition, it 

is necessary to note that at assimilation of this problematics in the Soviet 

Union in Russian-lingual terminology, whose basis for the first time have 
been laid by us at 1970, for the concept «Cellular automata» the term 

«Homogeneous structures» (HSs; HS–models) has been determined that 

nowadays is the generally accepted term together with a whole series of 

other our notions, definitions and denotations. While a rather detailed list 
of publications on CAs problematics can be found, for example, in [154]. 

Therefore, during the present survey along with this term its well–known 

Russian–lingual equivalent «Homogeneous structures» can be used too. 

Cellular automaton (CA) – a parallel information processing system that 

consists of infinity intercommunicating identical finite Mealy automata 
(elementary automata). We can interpret CAs also as a theoretical basis 

of artificial high parallel information processing systems. From logical 

standpoint a CA is an infinite automaton with specific internal structure. 
So, the CAs theory can be considered as structural and dynamical theory 

of the infinite automata. At that, CAs can serve as an excellent basis for 

modeling of many discrete processes, representing interesting enough 
independent objects for research too. Recently, the undoubted interest to 

CA problematics (above all in the applied aspect) has arisen anew, and 

in this direction many remarkable results have been obtained. In addition, 

by CAs and CA we will mean cellular automata and a separate cellular 
automaton, depending on the context without causing misunderstandings. 

Thus, the CA–axiomatics provides three fundamental properties such as 

homogeneity, localness and parallelism of functioning. If in a similar 

computing model we shall with each elementary automaton associate a 

separate microprocessor then it is possible to unrestrictedly increase the 
sizes of similar computing system without any essential increase of its 

temporal and constructive expenses, required for each new expansion of 

the computing space, and also without any overheads connected to the 
coordination of functioning of an arbitrary supplementary quantity of 

elementary microprocessors. Similar high–parallel computing models 

admit practical realizations consisting of large enough number of rather 

elementary microprocessors which are limited not so much by certain 
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architectural reasons as by a lot of especially economic and technologic 

reasons defined by the modern level of development of microelectronic 
technology, however with the great potentialities in the future, first of all, 

in light of rather intensive works in field of nanotechnology. In addition, 

CA models can be used successfully for problems solving of information 
transformation such as encryption, encoding and data compression [113]. 

The above three such features as high homogeneity, high parallelism and 
locality of interactions are provided by the CA–axiomatic itself, whereas 

such property important from the physical standpoint as reversibility of 

dynamics is given by program way. In light of the listed properties even 
classical CAs are high–abstract models of the real physical world, which 

function in a space and time. Therefore, they in many respects better than 

many others formal architectures can be mapped onto a lot of physical 

realities in their modern understanding. Moreover the CA–concept itself 
is enough well adapted to solution of different problems of modelling in 

such areas as mathematics, cybernetics, development biology, theoretical 

physics, computing science, discrete synergetic, dynamic systems theory, 
robotics, etc. Numerous visual examples available for today lead us to a 

conclusion that CAs can represent a rather serious interest as a new rather 

perspective environment of modelling and research of different discrete 
processes and phenomena, determined by the above properties; at that, 

by bringing the CA–problematics on a new interdisciplinary level and, on 

the other hand, as a rather interesting independent formal mathematical 

object of researches [3,113,117,122-124,138-146,155-161,175-178,182]. 

The base modern tendencies of elaboration of perspective architecture of 

high parallel computer facilities, the problem of modelling of discrete 
parallel processes, discrete mathematics and synergetic, theory of parallel 

discrete dynamical systems, problems of artificial intellect and robotics, 

parallel information processing and algorithms, physical and biological 
modelling, along with a lot of other important prerequisites in different 

areas of modern natural sciences define at the latest years a new ascent of 

the interest to the formal cellular models of various type which possess 
high parallel manner of acting; the cellular automata are some of major 

models of such type. During time which has passed after appearance of 

the first monographs and the collected papers which have been devoted 

to various theoretic and applied aspects of the CAs problems, the certain 
progress has been reached in this direction, that is connected, above all, 

with successes of theoretical character along with essential expansion of 

field of appendices of the CA–models, especially, in computer science, 
cybernetics, physics, modelling, developmental biology and substantial 

growth of number of researchers in this direction. At the same time in the 

USA, Japan, Germany, the Great Britain, Hungary, Estonia, etc., a series 
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of works summarizing the results of progress in those or other directions 

of CAs problematics including its numerous appendices in various fields 
has appeared. Our monographs and reports at a certain substantial level 

have represented the reviews of the basic results received by the Tallinn 

Research Group (TRG) on the CA problematics and its application [113]. 
From the very outset of our researches on the CA problematics, above all, 

with an application accent onto mathematical developmental biology the 

informal TRG consisting of researchers of some leading scientific centres 

of the former USSR has gradually been formed up. At that, the TRG staff 
was not strictly permanent and was being changed in rather broad bounds 

depending on the researched problems. In works [113,140-148,155-161] 

the analysis of the TRG activity instructive to some degree for research 
of the dynamics of development of the CA problematics as a independent 

scientific direction as a whole had been represented. Ibidem, our basic 

directions of research can be found along with main received results. 

Today, cellular automata are being investigated from many standpoints 

and interrelations of objects of such type with already existing problems 
are being discovered constantly. For purposes of general acquaintance 

with extensive CAs problematics as a whole along with its separate basic 

directions specifically, we recommend to address oneself to interesting 
and versatile reviews of such researchers as V.Z. Aladjev, V. Cimagalli, 

K. Culik, D. Hiebeler, A. Lindenmayer, A. Smith, P. Sarkar, T. Toffoli, 

M. Mitchell, R. Vollmar, S. Wolfram, et al. [154]. A series of books and 

monographs of the authors such as V.Z. Aladjev, T. Toffoli, R. Vollmar, 
A. Adamatzky, E. Codd, A. Ilachinskii, M. Garzon, M. Duff, P. Kendall, 

B. Voorhees, M. Sipper, O. Martin, K. Preston, S. Wolfram, N. Margolus, 

B. Voorhees, V. Kudrjvcev, and some others contain a rather interesting 
historical excursus in the CA problematics; at that, unfortunately, hitherto 

a common standpoint onto historical aspect in this question is absent. In 

view of that, here is a rather opportune possibility to briefly emphasize 

once again our standpoint on historical aspect of the CAs problematics: a 
brief historical excursus presented below make it one's aim to define the 

basic stages of becoming of the CAs problematics, having digressed from 

numerous particulars [113,141-144,163,175-178,183]. 

Having started own study on the CA-problematics in 1969, we on base of 

analysis of large number of publications and direct dialogue with many 
leading researchers in this direction have a quite certain information that 

concerns the objective development of its basic directions, above all, of 

theoretical character. That allows us with sufficient degree of objectivity 
to note the pivotal stages of its development; at the same time, numerous 

details of historical character concerning the CA–problematics the reader 

can find, for example, in a whole series of works presented in links [154]. 
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From theoretical standpoint the CAs concept (Homogeneous structures) 

has been introduced at the end of the forties of the past century by John 
von Neumann on S. Ulam's advice with purpose of determination of more 

realistic and well formalized model for research of behaviour of complex 

evolutionary systems, including self–reproduction of the alive organisms. 
Whereas S. Ulam has used CA–like models, in particular, for researches 

of the growth problem of crystals and certain other discrete systems that 

grows in conformity with recurrent rules. The structures which have been 

investigated by him and his colleagues were, mainly, of dimensionality 1 
and 2, however higher dimensions have been considered too. In addition, 

questions of universal computability along with certain other theoretical 

questions of behaviour of cellular structures of such type also were kept 
in view. A little bit later also A. Church started to investigate the similar 

structures in connection with works in field of infinite abstract automata 

and mathematical logic [154]. J. von Neumann's СА–model has received 
the further development in works of him direct followers whose results 

with the finished and edited work of the first one have been published by 

A.W. Burks in his excellent works [154], which in many respects have 

determined development of researches in the given direction for several 
subsequent years. In process of researches on the CA–problematics A.W. 

Burks has organized at the Michigan university the research team «The 

Logic of Computer Group», from which a whole series of the first–class 
experts on the CA–problematics has come out afterwards (J. Holland, R. 

Laing, T. Toffoli, and many others). 

At the same time, considering historical aspect of the СА–problematics, 

we should not forget an important contribution to the given problematic 

which was made by pioneer works Konrad Zuse (Germany) and with 
which the world scientific community has been familiarized enough late 

and even frequently without his mention in this historical aspect. At that, 

K. Zuse not only has created the first programmable computers (1935–

1941), has invented the first high–level programming language (1945), 
but was also the first who has introduced idea of «Rechnender Raum» 

(Computable Spaces), or in the modern terminology – Cellular Automata. 

Furthermore, K. Zuse has supposed that physical processes in point of 
fact are calculations, while our universe is a certain «cellular automaton» 

[154]. In the late seventies of the last century such view on the universe 

was innovative, whereas now the idea of the computing universe horrify 
nobody, finding logical place in the modern theories of some researchers 

working in the field of quantum mechanics [154]. Unfortunately, even at 

present the K. Zuse's ideas are unfamiliar to rather meticulous researchers 

in this field. For exclusion of any speculative historical aspects existing 
occasionally today, in the following historical researches it is necessary 
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to pay the most steadfast attention on this rather essential circumstance. 

So, namely therefore, only many years later the similar ideas have been 
republished, popularized and redeveloped in research of other researchers 

such as S. Wolfram, T. Toffoli, E. Fredkin, et al. [3,113,154]. In addition, 

the CAs concept itself has been entered by John von Neumann. Perhaps, 
John Neumann, being familiar with K. Zuse ideas, could apply cellular 

automata not only for simulation of process of reproducing automata, but 

also for creation of high parallel computing model, but it did not happen. 

From more practical standpoint and game experiment the СА-models has 

notified about itself in the late sixties of the last century when J. Conway 
has presented the now known game «Life». This game became a rather 

popular and has attracted attention to cellular automata of both numerous 

scientists from different fields and amateurs [154]. At the same time, this 

game, probably, is the most known CA model; at that, it will possess the 
ability to self–reproduction and universal computing. By modelling the 

process of work of an arbitrary Turing machine by means of a СА model, 

J.H. Conway has proved ability of the model to universal computability. 
Later a rather simple manner of implementation of any Boolean function 

in configurations of the «Life» has been suggested [154]. So, even such 

simple CA model turned out equivalent to the universal Turing machine. 
Furthermore, to the given CA model the significant interest exists and till 

now does not disappear above all to its various computer simulating [113, 

154]. Thus, early ideas and research of the first–rate mathematicians and 

cyberneticians such as K. Zuse, John von Neumann, S. Ulam, A. Church 
along with their certain direct followers we with good reason can ascribe 

to the first stage of formation of the CAs problematics as a whole. 

The necessity for a good formalized media for modelling of processes of 

biological development and above all of self–reproduction process was 

being as one of the base prerequisites that stimulated the CA–concept 
beginning. Thereupon, John Neumann and a whole series of his direct 

followers have investigated a series of questions of computational and 

constructive opportunities of the first CA–models. The above works at 
the end of the fifties of the last century have attracted to the problematic 

a lot of researchers [154]. At that, homogeneous structures were being 

rediscovered not once and under various names: in electrical engineering 

they are known as iterative networks, in pure mathematics as a section of 
topological dynamics, in biological sciences as cellular structures, etc. 

As second stage in formation of the CA–problematics it is quite possible 

to consider publication of the widely known works of E.F. Moore and J. 

Myhill on the nonconstructability problem in classical CA–models which 

along with solution of certain mathematical problems in a certain sense 
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became accelerators of activity, attracting a rather steadfast attention to 

this problematics of a lot of mathematicians and researchers from other 
fields [154]. So, for example, we have familiarized oneself with the CA–

problematics in 1969 owing to Russian translation of the excellent work 

edited by R. Bellman that contained well–known articles of E.F. Moore, 
S. Ulam and J. Myhill [1]. Scientific groups on the CA–problematics in 

the USA, Germany, Japan, Hungary, Italy, France, and USSR (ESSR, 

TRG, 1970) are formed up. The further development and popularization 

of the CA–problematics can be connected with names of researchers such 
as E.F. Codd, S. Cole, E.F. Moore, J. Myhill, H. Yamada, S. Amoroso, E. 

Banks, J. Buttler, V.Z. Aladjev, J. Holland, G.T. Herman, A.R. Smith, T. 

Yaku, A. Maruoka, Y. Kobuchi, G. Hedlund, M. Kimura, A. Waksman, H. 
Nishio, T. Ostrand, and a whole series of others researchers whose works 

in the sixties – the seventies of the last century have attracted attention to 

the given problematics from the theoretical standpoint; they have solved 
and formulated a lot of interesting enough problems [154]. In the future, 

mathematicians, physicists, and biologists began to use the CAs with the 

purpose of research of own specific problems. In particular, in the early 

sixties – the late seventies of the last century the numerous researchers 
have prepared entry of the CA–problematics into the current stage of its 

development that is characterized by join of earlier disconnected ideas 

and methods on the general conceptual and methodological platforms, 
along with a rather essential expansion of fields of its application. 

We can attribute the beginning of the third period to the early eighties of 
the last century when to CA–problematics the special interest again has 

been renewed in connection with rather active researches on the problem 

of artificial intellect, physical modelling, elaboration of a new perspective 
architecture of high–parallel computer systems, and a lot of important 

motivations. So, in our opinion namely since the works of the researchers 

such as Bennet C., Grassberger P., Boghosian B., Crutchfield J., Chopard 

B., Culik II K., Gács P., Green D., Gutowitz H., Langton C., Martin O., 
Ibarra O., Kobuchi Y., Margolus M., Mazoyer J., Toffoli T., Wolfram S., 

Aladjev V., Bandman O., etc. a new splash of interest to the CAs began 

as a perspective environment, above all, of physical modelling. A rather 
extensive selection of references, including references on both the Soviet 

and the Russian–language authors, can be found in [154]. So, at present, 

CA–problematics are being rather widely studied from extremely various 
standpoints and interrelations of similar homogeneous structures with 

existing problems are constantly sought and discovered. A lot of rather 

large teams of researchers in many countries and first of all in the USA, 

Germany, the Great Britain, Italy, France, Japan, Australia deals with 
this problematics. Scientific activity in this direction was carried out and 
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in Estonia within of the TRG whose a whole series of results has received 

an international recognition and has made up essential enough part of a 
fairly developed modern CA–problematics. 

The modern standpoint on the CAs (HSs) theory has been formed under 
the influence of works of researchers such as Adamatzky A.I., Aladjev V., 

Amoroso S., Arbib M., Bagnoli F., Bandini S., Bandman O.L., Bays C., 

Banks E.R., Barca D., Barzdin J., Binder P., Boghosian B., Bolotov A.A., 
Burks A.W., Butler J., Cattaneo G., Chate H., Chowdhury D., Church A., 

Codd E.F., Crutchfield J.P., Culik K.II, Das A.K., Durand B., Durret R., 

Fokas A.S., Fredkin E., Gács P., Gardner M., Gerhardt M., Griffeath D., 
Golze U., Grassberger P., Green D., Gutowitz H.A,, Hedlund G., Honda 

N., Cole S., Hemmerling A., Holland J., Ibarra O., Ikaunieks E., Jen E., 

Ilachinskii A., Kaneko K., Kari J., Kimura M., Kobuchi Y., Kudryavtsev 

V.B, Langton C., Legendi T., Lieblein E., Lindenmayer A., Maneville P., 
Margolus N., Martin O., Maruoka A., Mazoyer J., Mitchell M., Moore 

E.F., Morita K., Myhill J., Nasu M., Neumann J., Nishio H., Ostrand T., 

Pedersen J., Podkolzin A., Sato T., Richardson D., Sarkar P., Sipper M., 
Smith A., Shereshevsky M., Sutner K., Takahashi H., Thatcher J., Toffoli 

T., Toom A.L., Tseitlin G.E., Varshavsky V.I., Vichniac G., Vollmar R., 

Voorhees B., Wuensche A.A., Waksman A., Weimar J., Willson S., Yaku 
T. Wolfram S., and other numerous researchers from many countries. 

Along with our works in the CA-problematics, it is necessary to note a lot 
of Soviet researchers who have received in the field the fundamental and 

rather considerable results at the sixties – the eighties of the last century. 

Here they: Adamatzky A.I. (identification of CAs models), Bandman O.L. 

(asynchronous CAs), Blishun A. (growth of patterns), Bliumin S. (growth 
of patterns), Bolotov A.A. (simulation among classes of CAs), Varshavsky 

V.I. (synchronization of CAs, simulation of anisotropic CAs on isotropic 

ones), Georgadze A., Mandzhgaladze P., Matevosian A. (growth of the 
configurations; universal stochastic and deterministic CAs, CA–models 

and parallel grammars), Dobrushin R.L., Vasil'ev N., Stavskaya O.N., 

Mitiushin L., Leontovich A., Toom A.L., (probabilistic CAs), Ikaunieks E. 
(nonconstructible configurations), Koganov A.V. (universal CAs, stable 

configurations, simulation of CAs), Kolotov A.T. (the models of excitable 

media), Levenshtein V. (synchronization in CAs), Kurdiumov G.L. and 

Levin L.A. (stochastic CAs), Makarevskii A.I. (implementation of Boolean 
functions in CAs), Petrov E. (synchronization of 2d–CAs), Podkolzin A.S. 

(simulation of CAs; asymptotic of the global dynamic; universal CAs), 

Pospelov D. (homogeneous structures and distributed AI in CA–models), 
Evreinov E., Prangishvili I. (CA-architecture of high-parallel processors), 

Reshod'ko L. (CAs of excitable media), Revin O. (simulation of anisotropic 

CAs on isotropic CA-models), Solntzev S. (growth of patterns), Tzetlin M. 
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(collectives of automata, games in the CAs), Tzeitlin G. (algebras of shift 

registers), Scherbakov E.S. (universal algebras of parallel substitutions), 
and a whole series of others domestic researchers [113,176-178,183]. 

It is supposed that the CA–models can play extremely important part as 
both conceptual and the applied models of spatially–distributed dynamic 

systems among which first of all an especial interest the computational, 

physical and biological cellular systems present. In the given direction 
already takes place a rather essential activity of a lot of the researchers 

who have received quite encouraging results [154]. At last, theoretical 

results of the above–mentioned and of a lot of other researchers have 
initiated a modern mathematical CAs theory evolved to the current time 

into an independent branch of the abstract automata theory that has a 

rather numerous interesting appendices in various areas of science and 

technics, in particular, in fields such as physics, developmental biology, 
parallel information processing, creation of perspective architecture of 

high–efficiency computer systems, computing sciences and informatics, 

which are linked to mathematical and computer modelling, etc., and by 
substantially raising the CA–concept onto a new interdisciplinary level. 

Our concise enough standpoint on the main stages of development and 

formation of the CA theory is given above; for today there is a number of 
the reviews devoted to this question, for example [154], many works on 

the CA–problematics in varying degree concern this question also [154]. 

Furthermore, it should be noted that the matter to a certain extent has a 

rather subjective character, and that needs to be meant. 

Meanwhile, the separate researchers in a gust of certain euphoria try to 

represent the CA–approach as an universal remedy of the solution of all 
problems and knowledge of outward things, identifying it with a «New 

kind» of science of universal character. In this connection it is necessary 

to mark the vast and pretentious book of S. Wolfram [162], whose title 
has rather advertising and commercial, than scientific–based character. 

This book contains many results that have been obtained much earlier by 

a lot of other researches on CA-problematics, including the Soviet authors 
(see references in [154] and some others). At the same time, the priority 

of many fundamental results in this field belongs to other researchers. 

The unhealthy vanity of the author of the book does not allow him to look 

without bias on history of the CA–problematics as a whole. In general, S. 
Wolfram enough frivolously addresses with authorship of the results that 

were received in CA–problematics, therefore there can be a impression –

everything made in this field belongs basically to him. At that, the book 
contains basically results of computer modelling with very simple types 

of CA–models, drawing the conclusions and assumptions on their basis 

with rather doubtful reliability and quality. In the book we can meet an 
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irritating density of passages in which the author takes personal credit for 

ideas that are «common knowledge» among experts in the relevant fields. 
Seems, such S. Wolfram passages and inferences similar to them cause 

utterly certain doubts in scientific decency and judiciousness of their 

author. At last, we absolutely do not agree that Wolfram book presents a 
“New kind” of science; nevertheless his book would be more pleasant to 

read if he were more modest. In our opinion, the given book represents in 

many respects a speculative sight both on CA–problematics, and on the 

science as a whole. Here we only shall note, contrary to the pursued 
purposes the book not only was not revelation for the researches working 

in the CA–problematics but also to a certain extent has caused a little bit 

deformed representation about the research domain which is perspective 
enough from many points of view. With relatively detailed point of view 

that concerns the book, the reader can familiarize in works [113,154] and 

some others. Meanwhile, in spite of the told above relative to the book, it 
can represent a certain interest, taking into consideration the marked and 

some other remarks. In our opinion, the Wolfram book doesn't introduce 

of anything essentially new in the cellular automata theory above all in 

its mathematical component, wearing, rather, a certain claim character, 
but this is already on the author's conscience; in fact, the given book is 

most likely of a scientific and popularization nature and nothing more. 

At last, we will make one essential enough remark concerning of place of 

the CA–problematics in scientific structure. By synchronization with the 

standpoint on CA–problematics that is declared by our books [157-161] a 
vision of the given question is being presented as follows. Our long–term 

experience of investigations in the CA–problematics both on theoretical 

and especially applied level speaks entirely about another, namely: 

(1) CA–models (cellular automata, homogeneous structures) represent a 

special class of infinite abstract automata with specific internal structure 
that provides extremely high–parallel level of the information processing 

and calculations; these models form a specific class of discrete dynamic 

systems which function in especially parallel way on base of principle of 
local short–range interaction; 

(2) CA can serve as a satisfactory model of high–parallel processing just 

as Turing machines (Markov normal algorithms, productions systems, 

Post machines, etc.) serve as formal models of sequential calculations; 
from this point of view the CA–models it is possible to consider and as 

algebraic processing systems of finite or infinite words, defined in finite 

alphabets, on the basis of a finite set of rules of parallel substitutions; in 

particular, a CA–model can be interpreted as a certain system of parallel 
programming where the rules of parallel substitutions act as a parallel 

language of the lowest level programming; 
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(3) the principle of local interaction of elementary automata composing 

a CA–model that in result defines their global dynamics allows to use the 
CA and as a fine environment of modelling of a rather broad range of the 

processes, phenomena and objects; furthermore, the phenomenon of the 

reversibility permitted by the CAs does their by interesting enough means 
for physical modelling, and for creation of rather perspective computing 

structures basing on the nanotechnologies; 

(4) CA–models represent a rather interesting independent mathematical 

object whose essence consists in high–parallel processing of words both 
in finite and infinite alphabets. 

At that, it is possible to associate the CA–approach with a certain model 

analogue of the differential equations in partial derivatives that describe 

those or another processes with that difference, if differential equations 

describe a process at the average, in a CA–model defined in appropriate 
way, a certain researched process is really embedded and dynamics of 

the CA–models enough evidently represents the qualitative behaviour of 

researched process. Thus, it is necessary to determine for an elementary 
automaton of the model the necessary properties and rules of their local 

interaction by appropriate way. The CA–approach can be used for study 

of processes described by complex differential equations which have not 
of analytical solution, and for the processes that cannot be described by 

such equations. Moreover, the CA present a rather perspective modelling 

environment for research of those phenomena, processes, and objects for 

which there are no known classical means or they are complex enough. 

As we already noted, as against many other modern fields of science, the 

theoretical part of the CA–problematics is no so appreciably crossed with 
its second applied component, therefore we can consider CAs problems 

as two independent enough directions: study CA as mathematical objects 

and use CAs for modelling; at that, the second direction is characterized 
even by the wider spectrum. The level of evolution of the 2nd direction is 

appreciably being determined by possibilities of the modern computing 

systems since CA–models, as a rule, are being designed on base of the 
immense number of elementary automata and, as a rule, with complex 

enough rules of local interaction among themselves. 

The indubitable interest to them amplifies also a possibility of practical 

realization of high parallel computing CAs on basis of modern successes 

of microelectronics and prospects of the information processing at the 
molecular level (methods of nanotechnology); whereas the CA–concept 

itself provides creation of conceptual and practical models of different 

spatially–distributed dynamic systems of which namely physical systems 

are the most interesting and perspective. Indeed, models that in obvious 
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way reduce macroscopic processes to rigorously determined microscopic 

processes represent especial epistemological and methodical interest for 
they possess the great persuasiveness and transparency. Namely, of this 

standpoint the CA–models of different type represent a special interest, 

above all, from the applied standpoint at research of a lot of phenomena, 
processes and objects in various fields and, first of all, in developmental 

biology, physics and computer science. 

The first direction enough intensively is developed by mathematicians 

whereas contribution to development of the second direction essentially 

more representative circle of researchers from various theoretical and 
applied fields (physics, chemistry, biology, technique, etc.) brings. Thus, 

if theoretical researches on the CA–problematics in general are limited to 

the classical, polygenic and stochastic CA–models, then the results of the 

second direction are based on essentially wider representation of classes 
and types of CA–models. As a whole, if classical CA–models represent 

first of all the formal mathematical systems researched in the appropriate 

context, then their numerous generalizations represent a rather perspective 
environment of modelling of various processes and objects. 

In the conclusion once again it is necessary to note an important enough 
circumstance, at discussion of the Classical cellular automata (CCA) we 

emphasize the following a rather essential moment. We considered the 

CCA–models which are a class of parallel discrete dynamic systems as 
certain formal algebraic systems of processing of finite configurations 

(words) in finite alphabets whatever, as a rule, to their microprogrammed 

environment, i.e. without use of their cellular organization on the lowest 

level inherent into them, what distinguishes our approach to research of 
the given objects from approaches of a lot of other researchers. Also, we 

consider CCA–models as a formal mathematical object having specific 

inside organization without ascribing to them a certain universality and 
generality in perception of the World. At similar approach the CCA are 

considered at especially formal level not allowing in full measure to use 

their intrinsic property of high parallelism in field of computations, and 
information processing as a whole. 

Naturally, for solution of a lot of different applied problems in the CA–

environment and obtaining of a series of thin results first of all of model 

character an approach on microprogram level is needed when a studied 

process, algorithm or phenomenon is directly embedded in CA–models, 
using its parameters: dimension, neighbourhood index, a states alphabet 

and a local transition function. At such approach it is possible to receive 

solutions of a lot of important appendices with generalizations of a rather 

high level of theoretical character. In particular, by direct embedding of 
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universal computing algorithms or logical elements into such objects it is 

possible to constructively prove existence of the universal computability, 
etc. In spite of such extremely simple concept of the CCAs, they by and 

large have a rather complex dynamics. In many cases theoretical research 

of their dynamics collides with a rather complexity. Therefore, computer 
simulation of these structures which in empirical way allows to research 

their dynamics is a rather powerful tool. For this reason this question is 

quite natural for investigations of the CA–problematics, considering the 

fact that CA–models at the formal level present the dynamical systems of 

high–parallel substitutions. 

Indeed, the problem of computer modelling of the CAs is solved at two 

main levels: (1) simulation of CAs dynamics on computers of traditional 

architecture, and (2) simulation on the hardware architecture which as 
much as possible corresponds to the CAs concept; so-called CA-oriented 

architecture of computing systems. Thus, computer simulation of the CA-

models plays a rather essential part at theoretical study of their dynamics; 

meanwhile, it is even more important at practical realizations of the CAs 
models of different processes. At present, a whole series of interesting 

systems of software and hardware for help of investigations of different 

types of the CA–models have been developed; their characteristics can be 
found in the references [154]. In our works a lot of programs in various 

program systems for different computer platforms had been presented. 

Among them a lot of interesting programs for simulation of CA–models 
in the Mathematica and Maple systems has been programmed. On the 

basis of computer simulation many of interesting theoretical results on 

the CCA and their use in the fields such as mathematics, developmental 

biology, computer sciences, etc. had been received. However, the given 
matter along with applied aspects of the CA–models in the present book 

aren`t considered, despatching the interested reader to a rather detailed 

discussion of these aspects to the corresponding publications in lists of 
references [154] and in references given in [155-161]; a lot of interesting 

works can be found in Internet by the corresponding key phrases too. 

The problematics considered by the TRG study in many respects has been 

conditioned by interests and tastes of the authors along with traditions of 

creative activity of the TRG in this field. At last, we will note that in our 
activity it is possible to allocate 3 main directions: (1) study of classical 

CAs as a formal parallel algorithm of processing of configurations in the 

finite alphabets, (2) applications of the classical and the generalized CAs 
in mathematics and computer facilities of highly parallel action, and (3) 

mathematical and developmental biology. With our main results in 2 last 

directions the interested reader can familiarize in sufficient detail in [113, 
141,155-161,182-196] and in numerous references contained in them. 
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CONCLUSION 

In the present book, we have attempted to summarize the main directions 

and results of the creative activity of the Tallinn Research Group (TRG) 

since its inception (1970) in such fields as cellular automata – the root 

cause of the formation of the Group, mainframes, personal computers, 
programming, automated control systems, computing sciences, computer 

mathematics systems (MathCAD, Maple, Mathematica), general statistics 

theory and others. It cannot be said that this book is unique in this field, 
TRG and has previously periodically published reports on its scientifical 

and practical activities, for instance in Moscow for the periods 1969-1993 

and 1995–1998, but they were of a slightly different nature and they did 
not consider a number of important activity directions of the Group. 

Along with this, TRG members were done both individual lectures and 
their courses in the above fields in universities and organizations in such 

countries as Estonia, Lithuania, Belarus, Ukraine, Russia and certain 

others. Within the same fields, TRG members have prepared and issued 
many publications of both monographic and textbooks along with a lot of 

periodicals. Our publications cover such countries as the USSR, Estonia, 

Belarus, Hungary, Russia, Germany, Lithuania, Czechoslovakia, Japan, 

Ukraine, the USA, Holland, Bulgaria, Great Britain, etc. A number of 
these publications were popular enough, quoted, and a number of them 

were posted on the Internet for free. Along with these original editions, 

we developed a large library UserLib of new software tools (more than 
850 tools), won the Smart Award network award, and a unified package 

MathToolBox (more 1420 tools) for Maple and Mathematica systems, 

respectively, expanding the functionality of these systems. Working on 

these popular tools was carried out not only in the process of preparing 
the corresponding textbooks for Maple and Mathematica systems, but 

also as a result of a very detailed testing of both systems. In 2018, both 

software tools were posted on the Internet in free access [183]. 

The presented material allows to see in historical retrospect our tortuous 

enough path, from interest in cellular automata, fundamental fields to the 
purely applied fields, and vice versa. At the same time, the choice of a 

particular area was formed under the influence of both scientific interests 

and the interests of a particular department, with which the members of 
the TRG had close production relations. At last, to summarize the above, 

it should be noted that the presented book is both summing and final in 

nature, due to the fact that the most active members of the TRG and the 
Baltic branch of the International Academy of Noosphere are at a rather 

serious age, not stimulating a serious creative activity of the both Groups. 
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