B∏B №4(105) 2013

BCEAEHHAS POCTPAHCTBO * BPEMS

Научно-популярный журнал

ΠΟCΛΕΔΗΝЙ ΥΔΑΡ ΒИΜЫ

«Белая пятница» в Киеве

УСЕНШИНЫ В КОСМОСЕ история и судьбы

Космические телескопы

Часть II. Инфракрасный диапазон

ASG AUTO STANDARD GROUP

www.universemagazine.com

ИДЕТ ПОДПИСКА НА ВТОРОЕ ПОЛУГОДИЕ

Подписаться на журнал можно в любом почтовом отделении Украины и России

НАШИ ИНДЕКСЫ:
91147 — В Каталоге
периодических изданий Украины
12908 — В Каталоге «Пресса России»
24524 — В Каталоге «Почта России»

Клуб «Вселенная, пространство, время»

Основные направления деятельности:

Астрономия, астрофизика, космогония, физика микромира
Космонавтика, космические исследования
Планетология, науки о Земле: геология, экология и др.
Науки о жизни: биология, микробиология, экзобиология
Жизнь на Земле, палеонтология, антропология, археология, история цивилизаций

12 апреля состоится собрание Научно-просветительского клуба «Вселенная, пространство, время».

Место и время проведения: Киевский Дом ученых НАНУ, 18:30, Белая гостиная.

Адрес: ул. Владимирская, 45-а, ст. метро "Золотые ворота".

Вход по абонементам.

Тел. для справок: 050 960 46 94

На собрании будет представлен доклад «Астрономические основания астробиологии»

Исследования последнего десятилетия показывают, с одной стороны, широкий спектр экологических ниш для сушествования и воспроизведения живых организмов на дне земных океанов, в вечной мерзлоте и горячих вулканических источниках, а с другой стороны – наличие похожих подходящих для жизни условий на Марсе, а также спутниках Юпитера и Сатурна (где с большой долей вероятности имеются подповерхностные океаны). Обнаружение большого количества разнообразных экзопланет, указывает на возможность существования во Вселенной различных жизненных форм. Это придает актуальность новой отрасли науки – астробиологии, изучающей многообразие возможных сред для возникновения и развития биологических объектов.

Освещается опыт преподавания курса "Астрономические основания астробиологии" в Одесском национальном университете им. И.И.Мечникова.

Докладчик: Сопредседатель Международного Евразийского астрономического общества, Председатель Одесского астрономического общества, старший научный сотрудник Одесской обсерватории Радиоастрономического института НАНУ, доцент кафедры астрономии физического факультета ОНУ им. И.И.Мечникова **Михаил Иванович Рябов.**

После выступления можно будет задать любые вопросы и обсудить затронутую тематику.

Руководитель проекта,

Гордиенко С.П., к.т.н. (киевская редакция)

Главный редактор:

Остапенко А.Ю. (московская редакция)

Заместитель главного редактора:

Манько В.А.

Редакторы:

Рогозин Д.А., Ковальчук Г.У.

Редакционный совет:

Андронов И. Л. — декан факультета Одесского национального морского университета, доктор ф.-м. наук, профессор, вице-президент Украинской ассоциации любителей астрономии

Вавилова И.Б. — ученый секретарь Совета по космическим исследованиям НАН Украины вице-президент Украинской астрономической ассоциации, кандидат ф.-м. наук

Митрахов Н.А. – Президент информационноаналитического центра Спейс-Информ, директор информационного комитета Аэрокосмического общества Украины, к.т.н.

Олейник И.И. — генерал-полковник, доктор технических наук, заслуженный деятель науки и техники РФ

Рябов М.И. — старший научный сотрудник Одесской обсерватории радиоастрономического института НАН Украины, кандидат ф.-м. наук, сопредседатель Международного астрономического общества

Черепащук А.М. — директор Государственного астрономического института им. Штернберга (ГАИШ), академик РАН

Чурюмов К.И. — член-корреспондент НАН Украины, доктор ф.-м. наук, профессор Киевского национального Университета им. Т. Шевченко

Гордиенко А.С. — Президент группы компаний «AutoStandardGroup»

Дизайн, компьютерная верстка:

Галушка С.М.

Художник: Попов В.С.

Отдел продаж: Малакович Е.А

тел.: (067) 370-60-39

Адреса редакции:

02152, г. Киев,

ул. Днепровская набережная, 1А, оф. 146. тел.: (044) 295-02-77

тел./факс: (044) 295-00-22

uverce@gmail.com e-mail: info@universemagazine.com

сайт: www.universemagazine.com Распространяется по Украине

и в странах СНГ

В рознице цена свободная

Подписные индексы Украина - 91147

Россия -

12908 — в каталоге «Пресса России»

24524 — в каталоге «Почта России»

Учредитель и издатель

ЧП «Третья планета»

© ВСЕЛЕННАЯ, пространство, время — №4 апрель 2013

Зарегистрировано Государственным

комитетом телевиления

и радиовещания Украины

Свидетельство КВ 7947 от 06.10.2003 г. Тираж 8000 экз.

Ответственность за достоверность фактов в публикуемых материалах несут авторы статей

Ответственность за достоверность информации в рекламе несут рекламодатели Перепечатка или иное использование материалов допускается только с письменного согласия редакции. При цитировании ссылка на журнал

Формат - 60х90/8 Отпечатано в типографии 000 «Слон», Киев, ул. Бориспольская, 9. тел. (044) 592-35-06

$\mathsf{BCE}\mathsf{\Lambda}\mathsf{EHHAS}$, пространство, время —

международный научно-популярный журнал по астрономии и космонавтике, рассчитанный на массового читателя

Издается при поддержке Международного Евразийского астрономического общества, Украинской астрономической ассоциации, Национальной академии наук Украины, Государственного космического агентства Украины, Информационно-аналитического центра «Спейс-Информ», Аэрокосмического общества Украины

СОДЕРЖАНИЕ

ВСЕЛЕННАЯ

Космические телескопы инфракрасного диапазона

(обзор)

4

22

СОЛНЕЧНАЯ СИСТЕМА

Новости

Жизнь на Марсе все еще 16 существует?

Марсоход Curiosity переключен 18 на запасной компьютер

Комета угрожает Марсу 19 Крутой берег песчаной

«реки» 20 Названия «Цербер» и «Вулкан»

20 выбраны голосованием

Земля может вызвать 21 «астероидотрясения»

история космонавтики

24 Женщины в космосе

Александр Железняков

КОСМОНАВТИКА

Новости

КНИГИ

Dragon снова прибыл 30 на МКС Индийская ракета вывела на орбиту семь спутников 31 Российский спутник столкнулся

с фрагментом космического 32 мусора Памятник Гагарину

открыт в Гринвиче NASA потеряла связь с МКС

Япония отправит в космос 33 первого андроида Китай строит четвертый 33 космодром Вторая китаянка готовится 33 к полету Подведены итоги космической деятельности Украины в 2012 г. 34 О заседании коллегии Федерального космического 36 агентства ЗЕМЛЯ Новости У Земли обнаружен третий 38 радиационный пояс 42 «Белая пятница» в Киеве **ЛЮБИТЕЛЬСКАЯ АСТРОНОМИЯ** Небесные события мая

Уважаемые читатели! В №1 за 2013 г. на стр. 27 на нижнем правом рисунке был ошибочно указан Северный географический полюс вместо Южного. Редакция приносит свои извинения за допущенную ошибку.

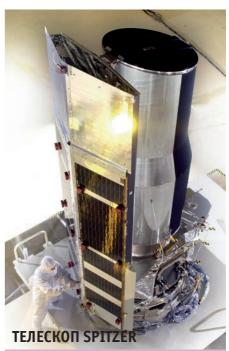
32

32

отличие от телескопов, работающих в оптическом диапазоне, строить специализированные инфракрасные обсерватории на поверхности Земли не имеет смысла - это излучение практически полностью поглощается атмосферой (лишь высоко в горах или с высотных самолетов можно «поймать» участок инфракрасного спектра, вплотную примыкающий к видимому¹). Тем не менее, именно в этом диапазоне в основном излучают планетоподобные тела, на которых ученые ожидают найти жизнь, похожую на земную. Поэтому внеатмосферная астрономия в таких исследованиях оказалась просто незаменимой. Уже первые проекты космических телескопов были ориентированы именно на инфракрасный диапазон, однако полноценно реализовать их долго не удавалось, и одним из серьезнейших препятствий оказалось собственное излучение аппаратов.

Spitzer

История последовательного «вознесения» детекторов инфракрасного излучения к границе космоса и за ее пределы уже частично освещалась на страницах нашего журнала.² Ее «наивысшей точкой» стал телескоп Spitzer - финальная миссия программы NASA «Большие обсерватории» (Great Observatories Program) и первый астрономический инструмент, ведущий наблюдения не с околоземной, а с околосолнечной орбиты.³ Такое его расположение было выбрано из-за того, что этот инструмент исследует небесную сферу в дальнем инфракрасном диапазоне электромагнитного спектра, что требует охлаждения системы зеркал и приемников излучения до температур, всего на несколько градусов выше абсолютного нуля (-273°C). Однако поблизости от Земли поддерживать температуру на этой отметке на протяжении длительного времени было бы невозможно - на это пришлось бы расходовать слишком много хладагента (жидкого гелия), запасы которого на борту космического аппарата ограничивались 360 литрами. От нагрева солнечными лучами защититься значительно проще, установив на телескопе специальные отражающие панели. Благодаря этому даже после исчерпания запасов охладителя Spitzer не нагревается выше, чем 40 К (-233°С) и может продолжать на-


¹ ВПВ №3, 2004, стр. 14; №4, 2007, стр. 4; №3, 2010, стр. 5; №3, 2011, стр. 35 блюдения с помощью одного из трех своих научных приборов. В таком «теплом» режиме он работает с мая 2009 г.

Рабочий диапазон обсерватории — от 3 до 180 мкм, он охватывает практически весь инфракрасный спектр, исключая наиболее длинноволновую его часть. Период обращения телескопа вокруг Солнца на 6 дней больше земного года, поэтому в своем орбитальном движении он постепенно «отстает» от нашей планеты (примерно на 15 млн. км в год). Его гелиоцентрическое расстояние изменяется в пределах 0,98-1,02 а.е. Плановый срок функционирования исходно составлял 2,5 года, однако Spitzer, запущенный 25 августа 2003 г. с космодрома на мысе Канаверал ракетой Delta II, до сих пор исправно передает научную информацию.

Основные научные достижения. Уже вскоре после начала выполнения научной программы Spitzer нарушил «монополию» телескопа Hubble на информативные и живописные снимки космоса. Вдобавок теперь это были снимки того, что никогда не смог бы увидеть человеческий глаз, не имея в своем распоряжении сложных чувствительных приемников излучения.

В сообществе астрономов популярно стремление открыть и исследовать нечто из разряда «самое-самое»: самую массивную и, наоборот, самую легкую звезду, самую удаленную или самую близкую галактику и т.п. Как правило, «экстремальный статус» объекта оказывается таковым только на момент его открытия. В особенности это касается внегалактической астрономии, изучающей эпохи, близкие к моменту Большого взрыва. Каждый новый шаг в приближении к этому загадочному «отправному пункту» в настоящее время измеряется уже в процентах, а то и долях процента возраста Вселенной.

Сотрудникам рабочей группы телескопа Spitzer удалось принять активное участие в определении статуса «самой далекой
галактики» для объекта MACS0647-JD, поперечник которого не превышает 600 световых лет⁵ (размер Большого Магелланова
Облака – карликовой галактики-компаньона
Млечного Пути – составляет 14 тыс. световых лет⁶). Возможно, и в конкурсе на звание
«самой маленькой» эта галактика имела бы
неплохие шансы на победу. Астрономы считают, что она образовалась не позже, чем
через 420 млн. лет после Большого взрыва.
В рамках существующих теорий образования звездных систем объект MACS0647-JD

ХАРАКТЕРИСТИКИ ИНСТРУМЕНТА

> Macca: 950 кг, в т.ч.: телескоп - 851,5 кг, крышка - 6,0 кг, жидкий гелий - 50,4 кг, топливо бортовых двигателей - 15,6 кг

НАУЧНОЕ ОБОРУДОВАНИЕ – комплекс криогенного телескопа (Cryogenic Telescope Assembly), включающий собственно телескоп-рефлектор системы Ричи-Кретьена диаметром 0,85 м и три научных прибора:

- ▶ инфракрасная камера/спектрометр IRAC (рабочий диапазон 5-40 мкм)
- ▶ инфракрасный спектрометр IRS
- ➤ три массива инфракрасных детекторов MIPS (3-180 мкм)

ОСНОВНЫЕ ОБЪЕКТЫ НАБЛЮДЕНИЙ:

- ➤ Звезды (в т.ч. на поздних стадиях эволюции)
- ➤ Протопланетные и околопланетные газово-пылевые диски
- > Экзопланеты
- > Карлики и звезды малой массы
- > Гигантские молекулярные облака
- Галактики

(в т.ч. возникшие на ранних этапах эволюции Вселенной)

- Ядра активных галактик
- Сверхмассивные черные дыры

и полноценной галактикой назвать трудно – это всего лишь «зародыш» будущей громадной галактики, и на пути к «полноценности» ему предстоят неоднократные случаи столкновения и слияния со своими «космическими соседями». Открыли этот объект на снимках, полученных телескопом Hubble, но специфика его научного оборудования не давала возможности определить спектральные характеристики, необходимые для измерения расстояния. В этом вопросе последнее слово сказал именно Spitzer.

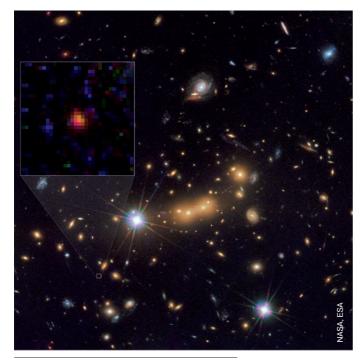
Кстати, этому рекорду явно предстоит долгая жизнь, поскольку «побить» его могут

² ВПВ №9, 2009, стр. 4

³ Микроволновая обсерватория WMAP в 2001 г. была выведена в точку Лагранжа L₂ системы «Земля-Солнце», то есть также работала не на околоземной орбите, однако она постоянно оставалась в пределах 1,8 млн. км от нашей планеты – ВПВ №9, 2009, стр. 25

⁴ Астрономическая единица (а.е.) — среднее расстояние между Землей и Солнцем, равное 149 597 870 км 5 ВПВ №11, 2012, стр. 16 6 ВПВ №6, 2007, стр. 8

только спектроскопические наблюдения, и пока сложно сказать, хватит ли для этого мощности космического телескопа нового поколения JWST, 7 запуск которого запланирован на 2018 г.


К первым открытиям телескопа Spitzer следует отнести обнаруженную в ходе исследований планетарной туманности NGC 246 странную структуру оболочки, выброшенной при взрыве центральной звезды. Более ранние исследования этого объекта с помощью телескопов, работающих в оптическом диапазоне, позволили рассмотреть только сияющий газово-пылевой шар, окружающий компактное светило. Spitzer показал его внутреннюю структуру. Оказалось, что по неизвестным для астрономов причинам часть выброшенного вещества собралась в своеобразный бублик. Что могло послужить причиной образования такого странного сгустка, смещенного к тому же относительно центра туманности? В качестве вариантов ответа рассматриваются гравитационное влияние невидимого звездного компаньона, образующего двойную систему, или же гигантской планеты, а возможно - сложная структура магнитного поля или вращение звезд.

С использованием телескопа Spitzer удалось зарегистрировать климатические изменения на весьма удаленном от Солнца коричневом карлике - объекте, масса которого больше планетной, но не достаточна для поддержания термоядерных реакций в его недрах.⁸ Температура этого объекта (он имеет обозначение 2MASS J22282889-431026) составляет 600-700°С, что явно многовато для планеты, не имеющей поблизости иного «источника тепла». К удивлению астрономов, выяснилось, что яркость карлика с течением времени меняется, причем периодичность этих изменений зависит от того, на каких длинах волн ведутся наблюдения. По мнению участников исследования, это связано с циркуляцией тех или иных веществ на разных высотах в его атмосфере, причем формирование раздельных активных атмосферных слоев определяется именно резким отличием физических условий (температуры и давления) в этих слоях. В какой-то степени аналогами коричневого карлика могли бы считаться газовые гиганты Солнечной системы Юпитер и Сатурн, однако в данном случае уже чувствуется некая его «звездная специфика»: в отличие от аммиачных облаков на Юпитере, облака на карлике состоят из горячих частиц кварца, мелких капель жидкого железа и других экзотических компонентов.


Одним из первых научных достижений команды наблюдателей, работающих с телескопом Spitzer, стало обнаружение форстерита (ортосиликат магния ${\rm Mg}_2{\rm SiO}_4$) в атмосферах рождающихся звезд.

К впечатляющим результатам экзопланетных наблюдений можно отнести открытие молекул в атмосфере одной из хорошо исследованных планет WASP-12b. Это было первое такого рода исследование сверхгорячего газового гиганта, обращающегося по орбите малого радиуса, почти «впритирку» к центральной звезде. Обнаружены молекулы моноксида углерода, метана и воды. Этот факт интересен уже потому, что WASP-12b - первый из планетоподобных объектов за пределами Солнечной системы с высоким содержанием углерода. Результат подтвердила команда Канадско-франко-гавайского телескопа (Canada-France-Hawaii Telescope) на горе Мауна Кеа, где были получены спектры экзопланеты в более коротковолновой части спектра.

Снимки космического телескопа Spitzer показывают, как эволюционировали со

На этой фотографии, сделанной орбитальным телескопом Hubble (NASA), видна гигантская «гравитационная линза», которая помогла астрономам увидеть самую далекую галактику из известных на данный момент — ей присвоили обозначение MACSO647-JD. Открытие было подтверждено спектральными наблюдениями космического телескопа Spitzer в инфракрасном диапазоне. В настоящее время реализуется специальная программа исследований крупных галактических скоплений, «концентрирующих» свет намного более удаленных объектов и позволяющих астрономам наблюдать их имеющимися средствами (без эффекта гравилинзирования увидеть их мы бы не смогли). Согласно последним оценкам, на этом снимке MACSO647-JD запечатлена такой, какой она была спустя 420 млн. лет после Большого

На снимке планетарной туманности NGC 246, сделанном космическим телескопом Spitzer, астрономы впервые увидели необычную подробность — огромное газовое кольцо (отмечено условным красным цветом), смещенное относительно центра облака разреженного вещества, выброшенного стареющей звездой (зеленый цвет). Подобные объекты интересуют ученых потому, что они представляют собой финальную стадию эволюции солнцеподобных звезд, наступающую после исчерпания в их недрах водородно-гелиевого термоядерного горючего. Составное изображение получено 6 декабря 2003 г. в спектральных линиях 3,6 мкм (условный голубой цвет), 4,5 мкм (зеленый), 5,8 мкм (оранжевый) и 8 мкм (красный).

⁷ ВПВ №10, 2009, стр. 10

⁸ Массы коричневых карликов лежат в диапазоне от 13 до 80 масс Юпитера (1,2-7,6% солнечной массы) – ВПВ №11, 2007, стр. 12; №2, 2009, стр. 15; №4, 2009, стр. 29

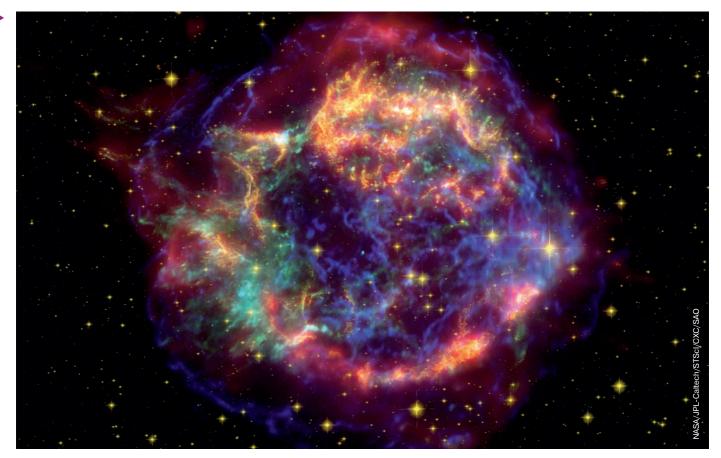
временем остаток сверхновой звезды Кассиопея А. Естественно, отслеживать такие изменения на протяжении всего лишь нескольких лет - задача не из легких, однако астрономы уже научились ее решать. Перед взрывом звезда имела массу в 15-20 раз больше, чем Солнце, и состояла из концентрических оболочек, в каждой из которых были сосредоточены различные химические элементы. Самые легкие - водород и гелий - содержались в основном во внешней оболочке, в то время как тяжелые элементы скапливались ближе к звездному ядру. Примерно в том же порядке они начали разлетаться после вспышки Сверхновой. Это говорит о том, что взрыв звезды не был хаотичным, и ее остатки в ходе него не перемешались в однородную по составу туманность.


На инфракрасном изображении небольшого участка неба размером 60'×7' после «вычитания» света всех уже известных звезд и галактик зарегистрировано слабое излучение, испускаемое, по мнению астрономов, древнейшими объектами Вселенной. Ученые считают, что эти тусклые объекты могли бы быть первыми сверхмассивными звездами или черными дырами. Они слишком удалены от нас, чтобы их можно было рассмотреть по отдельности, однако Spitzer «поймал» создаваемый ими совокупный инфракрасный фон, предположения о наличии которого высказывались уже давно.⁹

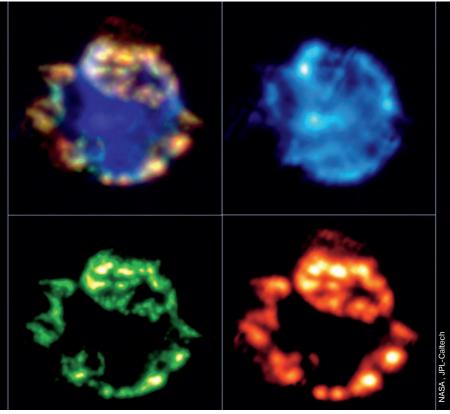
Преуспев в поисках «космической» воды и других химических соединений, важных с точки зрения возможности существования внеземной жизни, телескоп Spitzer одновременно засвидетельствовал отсутствие целого класса органических молекул - полициклических ароматических углеводородов - в некоторых галактиках. В частности, речь идет о внешних областях спиральной звездной системы М101. Количество органических молекул постепенно убывает по мере удаления от ее центра, однако вблизи внешнего края происходит резкий спад концентрации органики, сопровождаемый также заметным снижением содержания металлов. Одной из возможных причин такой аномалии может быть мошная радиация, связанная с масштабными областями звездообразования. 10

Интересный галактический катаклизм зарегистрировал Spitzer при фотографировании сливающейся пары галактик II Zw 096. Астрономов интересовал не просто их вид, но также проявление в них процессов зарождения молодых звезд, часто активи-

зирующихся в «переполненных» галактических центрах во время таких столкновений. Очаг звездообразования хорошо заметен в среднем инфракрасном диапазоне. Охваченный им регион имеет 700 световых лет в поперечнике (размер пары II Zw 096 составляет 50 тыс. световых лет), однако он представляет собой самую мощную вспышку звездообразования, когда-либо наблюдавшуюся вне ядра галактики. На основании полученных данных исследователи могут утверждать, что в этой области ежегодно «зажигаются» новые звезды общей массой более сотни солнечных. Это исключительно большая величина: во всей нашей Галактике интенсивность звездообразования почти на два порядка ниже.

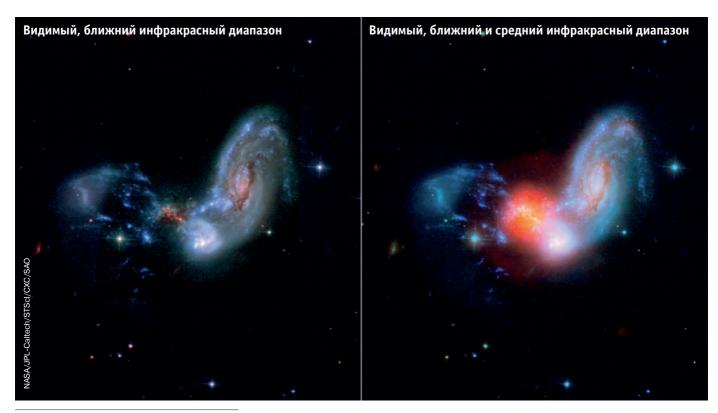


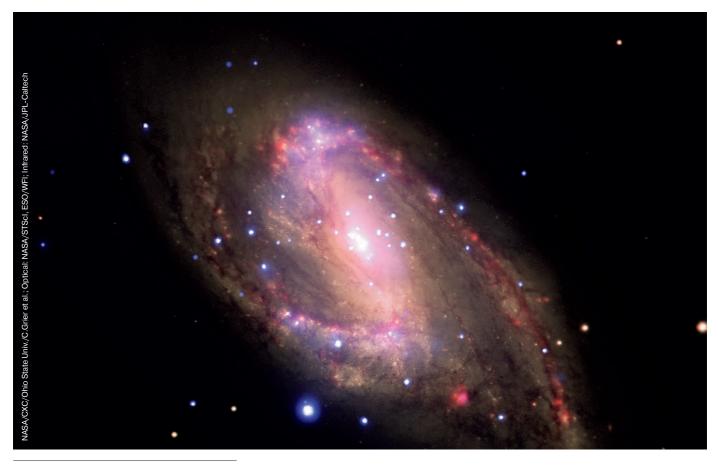
Вверху: коричневый карлик 2MASSJ22282889-431026 в представлении художника. Результаты его наблюдений с помощью телескопов Hubble и Spitzer позволяют утверждать, что в его атмосфере дуют мощные ветра и присутствуют облака протяженностью до нескольких тысяч километров. У этого объекта были выявлены регулярные изменения яркости с периодом около 90 минут, что само по себе не является чем-то особенным. Удивительным оказалось то, что амплитуда этих изменений зависела от длины волны, на которой проводились наблюдения. По мнению специалистов, это объясняется тем, что скорости ветров и мощности процессов образования вихревых структур различны в разных слоях атмосферы, подобно тому, что мы наблюдаем в атмосфере Земли во время мощных циклонов и штормов.


Внизу: возможное строение атмосферы 2MASSJ22282889-431026. Ее различные слои заметно отличающуюся друг от друга. Подобный вертикальный разрез структуры циклонических процессов на столь далеком объекте удалось сделать благодаря тому, что спектральный диапазон наблюдений был весьма широк. Максимум излучения каждого слоя с увеличением высоты приходится на все большую длину волны, что позволило астрономам, используя инфракрасную обсерваторию, «проникнуть вглубь» исследуемого объекта.

Кассиопея А – один из наиболее изученных остатков вспышки Сверхновой, находящийся на расстоянии около 10 тыс. световых лет. Расширяющееся газово-пылевое облако в настоящее время имеет поперечник около 10 световых лет. Изображение составлено из снимков, полученных космическим телескопом Spitzer (красный цвет), Hubble (желтый) и Chandra (зеленый, голубой).

Spitzer использовался также для уточнения знаменитой постоянной Хаббла. 11 С его помощью производились сверхточные измерения блеска цефеид - нестабильных звезд, строго периодически меняющих свою яркость, причем период этих изменений достаточно хорошо коррелирует с их абсолютной светимостью. 12 В инфракрасном диапазоне колебания блеска этих объектов еще более информативны. Для измерений было отобрано в общей сложности около 90 цефеид в Млечном Пути и соседнем Большом Магеллановом Облаке. Благодаря результатам этого исследования неопределенность значения константы Хаббла удалось снизить до 3%.


В ходе выполнения обзорных программ GLIMPSE (Galactic Legacy Infrared Mid-Plane Survey Extraordinaire) и MIPSGAL (Multiband Imaging Photometer for Spitzer Galactic) к анализу больших массивов однородной информации были привлечены любители астрономии – этот проект получил назва-


На синтезированном изображении радиоисточника Кассиопея А, представленном слева вверху, каждый цвет соответствует линии излучения отдельных компонентов в инфракрасном диапазоне: зеленый – атомам аргона (отдельно показан слева внизу), возникшим в ходе термоядерных реакций и выброшенным при взрыве Сверхновой, красный – протосиликатам, диоксиду кремния и оксиду железа (справа внизу), голубой – газообразному элементному кремнию, сосредоточенному более компактно ближе к центру взрыва. Всего спектрограф телескопа Spitzer получил информацию более чем для 1700 точек в окрестностях остатка вспышки, по которым было построено приведенное изображение. Оно стало одним из наиболее весомых доказательств того, что именно сверхновые являются источником межзвездной пыли, из которой впоследствии сформировались звезды следующих поколений, каменистые планеты и живые организмы.

 $^{^{10}}$ ВПВ №5, 2009, стр. 8; №2-3, 2013, стр. 6

¹¹ BΠB №4, 2006, cτp. 10

На изображении справа, построенном с учетом данных инфракрасного телескопа Spitzer, хорошо заметны всплески звездообразования (отмечены красным цветом) в системе сталкивающихся галактик II Zw 096. Слева — снимок того же объекта, сделанный орбитальной обсерваторией Hubble в видимом, ближнем ультрафиолетовом и ближнем ИК-диапазонах. На нем «последствия столкновения» практически незаметны. Наибольшая звездообразовательная активность сконцентрирована в крошечной по вселенским меркам области размером около 700 световых лет — на нее приходится до 80% всего инфракрасного излучения галактик. Наблюдения системы II Zw 096 производились в рамках обзора GOALS (Great Observatories All-Sky LIRG Survey).

Спиральная галактика M66 (NGC 3627) расположена в 30 млн. световых лет от Солнца и видна в созвездии Льва. Ее рентгеновское излучение, зарегистрированное космическим телескопом Chandra (показано голубым цветом), свидетельствует о наличии в ее центре сверхмассивной черной дыры. Это подтверждают и данные обсерватории Spitzer (красный цвет). Дальнейшее сопоставление данных этих двух инструментов показало, что активность галактического ядра никак не соотносится с интенсивностью звездообразования в галактике. Результаты съемки в видимом диапазоне (Hubble, VLT ESO) нанесены желтым цветом.

_

ХАРАКТЕРИСТИКИ ТЕЛЕСКОПА

- Тип: рефлектор системы Ричи-Кретьена
- **> Диаметр:** 3500 мм (самое большое зеркало, выведенное за пределы атмосферы)
- > Площадь собирающей поверхности: 9.6 м²
- > Фокусное расстояние: 28,5 M (f/8,7)
- Рабочий диапазон: от 60 до 670 мкм (инфракрасный)
- ➤ Macca: 3300 кг

НАУЧНЫЕ ПРИБОРЫ: Photodetector Array

Camera and Spectrometer (*PACS*) − фотометр и спектрометр среднего разрешения, работающий в диапазоне от 60 до 210 мкм

(этот диапазон является оптимальным для изучения молодых, удаленных, содержащих много пыли галактик с бурным звездообразованием, поскольку их пинии изпучения и максимум непрерывного спектра смещены в сторону более ллинных волн). Spectral and Photometric Imaging REceiver (SPIRE) - фотометр и спектрометр среднего разрешения для диапазона 194-672 мкм. Он предназначен для изучения очень далеких галактик и ранних стадий формирования звезд, когда они окружены плотной газово-пылевой оболочкой. Кроме того, этот инструмент

может исследовать образо-

вание и начальные стадии эволюции активных ядер галактик и квазаров, а также крупномасштабную структуру Вселенной в ранние эпохи. Heterodyne Instrument for the Far Infrared (HIFI) - гетеродинный спектрометр высокого разрешения для дальней инфракрасной области спектра. Он охватывает диапазоны 480-1250 и 1410-1910 ГГц (длина волны 157-625 мкм). Основная задача инструмента -

изучение химического

состава наблюдаемых

объектов, определение

их температур и других

характеристик вещества.

ТЕЛЕСКОП HERSHEL

ние Milky Way Project. Около 35 тыс. так называемых «гражданских ученых» (citizen scientists) приняли участие в поиске новых крупномасштабных структур в нашей Галактике на участке звездного неба длиной 130° и шириной более 2°. Обработку столь больших массивов данных невозможно автоматизировать в силу специфики самого процесса - рутинного поиска образований неправильной и непредсказуемой формы. Силами волонтеров на исследованной площадке было обнаружено около пяти тысяч «пузырей» - огромных газово-пылевых облаков с разрежением в центре. 13 Дальнейшие вычисления подтвердили сложную иерархическую упорядоченность их расположения, которая, в свою очередь, привела к интересному и необычному выводу: частота появления мелких «пузырей» связана с их положением относительно более «внушительных» соседей. Складывается впечатление, что расширение громадных газовых облаков является своего рода «спусковым крючком» для возбуждения волны звездообразования в определенных частях Галактики.

Более детальный анализ наблюдений телескопа Spitzer, проведенный астрономами-теоретиками, позволил немного «радикализировать» существующие космогонические теории - в частности, заявить о важности астероидных поясов в эволюции планетных систем. Такой вопрос встал на повестке дня после того, как были сняты все сомнения в наличии подобных структур в окрестностях иных звезд. Теперь существование пояса астероидов в Солнечной системе рассматривается не только с точки зрения его генезиса, но и с позиции его роли в возникновении жизни на Земле. В этом же аспекте изучается роль малых тел

в других известных планетных системах.

Ученые склонны считать, что местоположение околосолнечного астероидного пояса не случайно: он проходит очень близко к так называемой «снежной линии» (snow line), за которой водяной лед может подолгу находиться на поверхности маломассивных тел, не испаряясь и не разрушаясь под воздействием излучения Солнца. Именно на основании анализа данных телескопа Spitzer в 2012 г. была высказана гипотеза о том, что наличием воды на поверхности Земли мы обязаны вовсе не кометам, как это считалось ранее, а крупным объектам из пояса астероидов между орбитами Марса и Юпитера.14

Herschel

Herschel Space Observatory — KOCмический телескоп среднего и дальнего инфракрасного диапазона, первый астрономический инструмент, отправленный Европейским Космическим Агентством (ESA) в точку Лагранжа L₂ системы «Земля-Солнце». Первоначально этот проект назывался FIRST (Far Infrared and Submillimetre Telescope), но позже был переименован в честь Уильяма Гершеля - основоположника современной астрономии, в 1800 г. открывшего инфракрасные лучи.

Запущен ракетой Ariane 5 с космодрома Куру (Французская Гвиана) 14 мая 2009 г.¹⁵

Космический аппарат Herschel в среднем удален от Земли примерно на полтора миллиона километров, но из-за эллиптичности земной орбиты расстояние до него меняется в пределах от 1,2 до 1,8 млн. км. Каждый месяц производяться малые коррекции орбиты, чтобы компенсировать «снос» из окрестностей точки Лагранжа. Течтобы его чувствительные детекторы были защищены от мощного инфракрасного излучения этих объектов. К марту 2013 г. должны закончиться бортовые запасы жидкого гелия (исходно его на борту имелось около 2300 литров), необходимого для охлаждения оптической системы и инфракрасной ПЗС-матрицы. После этого Herschel полностью потеряет научную ценность. Специалисты ESA рассматривают два варианта его дальнейшей «судьбы»: отправка аппарата на гелиоцентрическую орбиту, двигаясь по которой, он не встретится с Землей на протяжении нескольких сотен лет, или же управляемый «сброс» на лунную поверхность. Если будет принято

лескоп постоянно направлен в противопо-

ложную сторону от Земли, Луны и Солнца,

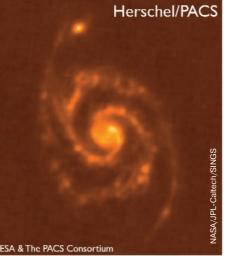
Сбор и передача информации происходят циклически. Космический телескоп «общается» с наземными приемо-передающими станциями ежедневно в течение трех часов. 21 час в сутки данные, полученные в ходе наблюдений, хранятся на борту.

решение реализовать второй вариант, па-

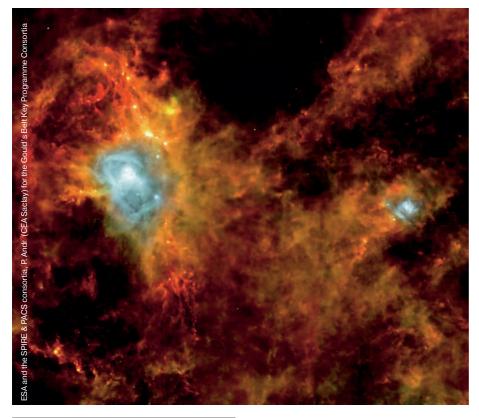
дение телескопа на Луну произойдет в ию-

не-июле 2013 г.¹⁶

Стоимость проекта с учетом пусковых услуг составила примерно 1,1 млрд. евро.


С помощью всех бортовых инструментов обсерватория может вести исследования небесной сферы в широком диапазоне длин волн – от 60 до 670 мкм, включая не наблюдавшийся ранее участок спектра. Это означает, что изучаемые объекты имеют очень низкие температуры (в пределах от -268°C до -223°C), соответственно зеркала телескопа и приемники излучения, чтобы не создавать помех, должны быть охлаждены еще сильнее. Для этого инструменты

¹² ВПВ №4, 2012, стр. 24


¹⁴ ВПВ №4, 2004, стр. 16 15 ВПВ №5, 2009, стр. 2

¹⁶ BΠB №11, 2012, cτp. 21

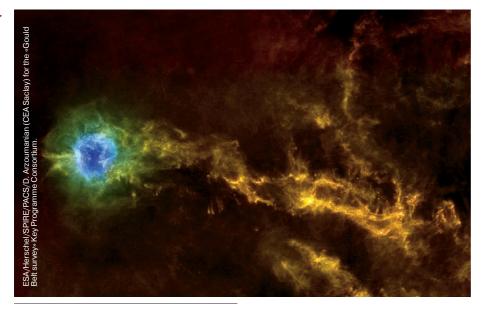
Сравнение снимков галактики M51, сделанных космическими обсерваториями Spitzer (слева) и Herschel (справа). Преимущества большей апертуры последнего хорошо заметны. Фотографирование в обоих случаях велось в спектральной линии 160 мкм.

«Звездные ясли» в созвездии Орла, скрытые от нас галактическими газово-пылевыми облаками и наблюдаемые только в ИК-диапазоне, являются частью Пояса Гулда — тороидальной области пространства, в котором концентрация звезд и межзвездной материи по непонятным пока причинам превышает среднюю для этой части нашей Галактики (ВПВ №3, 2009, стр. 10). В наиболее плотных участках переплетенных газовых волокон вещество начинает сжиматься, образуя компактные объекты — будущие звезды. Ярко светящийся в инфракрасных лучах сгусток из семи сотен таких «звездных зародышей» имеет размер 65 световых лет. Термоядерные реакции в недрах большинства из них пока не начались, и разогрев происходит за счет гравитационного сжатия. Изображение получено приборами РАСЅ и SPIRE космического телескопа Herschel 24 октября 2009 г. в рамках специальной программы изучения Пояса Гулда (Gould's Belt Key Programme).

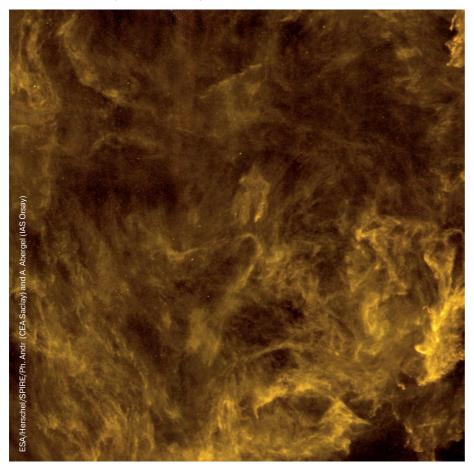
погружены в гигантский криостат, позволяющий достичь температуры -271 ° С и даже ниже, практически приближаясь к абсолютному нулю. Часть детекторов – например, болометры на приборах PACS и SPIRE – охлаждались до -272,3 ° С (всего на несколько десятых градуса выше абсолютного нуля).

Приборы сконструированы таким образом, чтобы дополнять друг друга. SPIRE и PACS представляют собой спектрометры, дающие возможность определить пространственное распределение изучаемых объектов, в то время как HIFI обеспечивает очень высокое спектральное разрешение.

Изображение той же галактики в трех рабочих диапазонах телескопа Herschel, синтезированное из снимков, полученных 14-15 июня 2009 г. Условным голубым цветом показаны результаты съемки на длине волны 70 мкм, желтым – 100 мкм, красным – 160 мкм.


Научные достижения телескопа

Hershel. Уже первые результаты работы новой инфракрасной обсерватории показали, что ученые получили в свое распоряжение уникальнейший научный инструмент, равного которому до сих пор не было ни на Земле, ни в Космосе. Тестовые наблюдения, прежде всего, проводились с целью сравнения возможностей нового аппарата с уже работавшим телескопом Spitzer, диаметр объектива которого составляет всего 0,85 м. Изображения спиральной галактики M51 («Водоворот») продемонстрировали явное и ожидаемое превосходство телескопа Herschel. 17 Кроме того, было выявлено существенное увеличение чувствительности его приборов на более коротких длинах волн. На комбинированном снимке той же галактики во всех трех рабочих диапазонах очень хорошо прослеживаются облака пыли и газа в окрестностях звезд и в межзвездной среде - «индикаторы» очагов звездообразования. Голубой цвет указывает на наличие горячей пыли, нагретой близлежащими молодыми звездами; более холодная пыль представлена красным цветом.


С использованием телескопа Herschel была обнаружена неизвестная ранее область звездообразования, расположенная на расстоянии около тысячи световых лет в созвездии Орла. На снимке этой области видно порядка 700 формирующихся звезд, «оплетенных» нитеподобными пылевыми структурами, которые простираются через все изображение. 18 Его анализ продемонстрировал все преимущества

¹⁷ ВПВ №9, 2009, стр. 11

¹⁸ BΠB №1, 2012, cтр. 24

Сравнительно плотные газовые волокна в межзвездном облаке IC 5146 видны на изображении. полученном обсерваторией Herschel в ИК-диапазоне на длинах волн 70, 250 и 500 мкм. Внутри волокон начинаются процессы звездообразования.



Сеть волокон холодного межзвездного газа, видимая в окрестностях северного полюса небесной сферы и сфотографированная в спектральных линиях 250, 350 и 500 мкм. В качестве возможной причины возникновения этой структуры называют взаимодействие ударных волн от многочисленных взрывов сверхновых в нашей Галактике.

европейской инфракрасной обсерватории, связанные с тем, что она ведет наблюдения как раз в том диапазоне длин волн, где особенно четко просматриваются начальные стадии процессов звездообразования, формирования протопланетных дисков и собственно планет.

На фотографии туманности «Кокон»

(ІС 5146, созвездие Лебедя) волокна светящейся пыли указывают на «космический кокон» - область, где в плотном пылевом окружении скрывается будущая звезда. Характерная ширина пылевых волокон говорит о том, что они возникли под действием ударных волн от взрывов «путешествующих» по Галактике массивных звезд, обога-

Наиболее детальное изображение Туманности Андромеды (М31) в дальнем инфракрасном диапазоне, полученное телескопом Herschel в конце 2010 г. Большие кольца пыли, окружающие центр галактики, вероятнее всего, являются результатом ее столкновения с другой галактикой меньших размеров, имевшего место в далеком прошлом.

щающих межзвездное пространство газом и пылью. Более того, ученые считают, что вдоль этих волокон продолжается активное звездообразование.

В ближайшей к нам спиральной галактике - Туманности Андромеды (M31)¹⁹ -Herschel запечатлел полосы и облака холодной пыли, излучающие в инфракрасном диапазоне, однако темные и непрозрачные в видимом свете. Красные оттенки во внешних областях галактики представляют свечение пыли, нагретой звездным светом до температур всего на несколько десятков градусов выше абсолютного нуля. Желтым цветом показана более горячая пыль, разогретая звездами в плотных спиральных рукавах. Эта пыль «сопровождается» молекулярным газом и позволяет обнаружить огромный резервуар вещества для формирования будущих поколений светил.

Необычное открытие сделал Herschel при исследованиях центра нашей Галактики: он «увидел» в направлении на него изогнутую ленту холодного газа и пыли, протянувшуюся на 600 световых лет. Природу этого образования ученым еще предстоит объяснить.

Весьма показателен опыт космического телескопа в изучении особо плотных галактических скоплений на больших расстояниях. На снимке участка звездного неба,

¹⁹ ВПВ №6, 2007, стр. 8; №7, 2012, стр. 4

Снимок Туманности Андромеды в видимом диапазоне, сделанный любителем астрономии Робертом Гендлером (Robert Gendler) с помощью рефлектора системы Ричи-Кретьена с диаметром объектива 320 мм.

расположенного в районе созвездия Малой Медведицы, можно увидеть огромное количество галактик. Некоторые из них удалены от нас на миллиарды световых лет.

Одна из важнейших научных задач космического телескопа – изучение химического состава небесных объектов посредством спектральных наблюдений. Исследования кометы 103P/Hartley, например, показали, что она состоит в основном из замерзшей солоноватой воды, очень похожей по составу на воду, наполняющую земные океаны.²⁰

Однако наиболее впечатляющие достижения обсерватории Herschel, конечно же, относятся к исследованию процессов звездообразования. Полученные им изображения демонстрируют тысячи далеких галактик, в которых зарождаются новые звезды. Наблюдения за облаком межзвездной пыли, имеющим обозначение RCW 120, выявили «кокон», окружающий звезду, которая, возможно, через несколько сотен тысяч лет превратится в одну из самых больших и ярких звезд Млечного Пути. На «стенке» огромного газово-пылевого пузыря,21 окружающего массивный объект, видна яркая белая точка - похоже, там идет формирование другой гигантской звезды. примерно в 8-10 раз превышающей по массе наше Солнце. Она окружена облаком газа и пыли массой в 2 тыс. солнечных, ко-

Астрономы, в общем, ожидали встретить в окрестностях центра Млечного Пути кольцо холодной материи (такие структуры уже наблюдались в других галактиках), однако снимки космического телескопа Herschel показали, что оно странным образом изогнуто, причины чего до сих пор непонятны. На приведенном изображении кольцо заметно в виде разорванной желтой полосы; разрыв вызван его пересечением с главной галактической плоскостью. Температура пыли и газа в кольце не превышает 15К (-258°С). В ходе предыдущих исследований его удавалось наблюдать только частично. В самых плотных его частях предположительно протекают процессы зарождения новых поколений звезд. Излучение наиболее теплого вещества представлено условным голубым цветом (соответствует длине волны 70 мкм), наиболее холодного – красным (длина волны 350 мкм). Результаты съемки на волне 160 мкм нанесены зеленым цветом.

торые в дальнейшем будут способствовать ее развитию. Современные теории звездообразования устанавливают верхний предел звездной массы в районе 8 солнечных, однако астрономам известно уже немало значительно более тяжелых светил, и ученые давно пытаются найти ответ на вопрос, какие процессы «помогают» звездам после достижения теоретического предела продолжать поглощать вещество из окружающего пространства, обеспечивая их дальнейший рост.

Весьма детально картину звездообразования запечатлел Herschel в хорошо известных «звездных яслях» - молекулярном облаке Парусов (Vela Molecular Ridge), расположенном вблизи экваториальной плоскости Млечного Пути, точнее, в наиболее массивном его компоненте Vela C. В относительно молодом по космическим меркам молекулярном комплексе (его возраст - менее миллиона лет) телескопу удалось разглядеть не только «коконы» будущих звезд, но и фрагменты облака, из которых эти «коконы» образуются. Предварительные исследования показывают, что этот комплекс может служить в качестве универсального «звездного роддома»: в нем обнаружены зародыши как маломассивных светил, так и объектов средней массы. Здесь наблюдается сложнейшая

структурированность газовых нитей, которые замысловато переплетены с пылевыми фрагментами.

Полученное совместными усилиями телескопов Herschel и Spitzer изображение нашего ближайшего соседа - галактики Большое Магелланово Облако (БМО) - показывает, что пылевые облака, которые ее заполняют, похожи на пыль, находящуюся в плоскости Млечного Пути. Температура пылевых частиц отражает интенсивность звездообразования. Данные телескопа Spitzer (голубой цвет) показывают теплую пыль, нагретую молодыми звездами. Информация, полученная инструментами обсерватории Herschel, нанесена красным и зеленым цветами. Это излучение пыли из областей с относительно низкими температурами, где звездообразование только начинается или уже прекратилось. Вид БМО в инфракрасных лучах, отображающий распределение пыли, заметно отличается от изображений в оптическом диапазоне. Эта галактика удалена от нас на 160 тыс. световых лет.

Естественно, европейский телескоп задействовали и в наиболее актуальных исследованиях – в частности, в поисках экзопланет. Здесь также особенно эффективным оказался его «дуэт» со своим американским «коллегой». Совместно им

²⁰ ВПВ №7, 2010, стр. 36; №11, 2010, стр. 14; №12, 2010, стр. 12

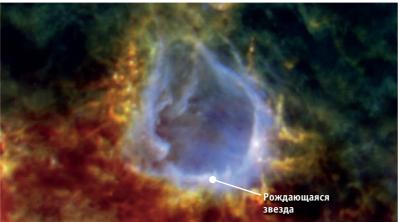
²¹ BΠB №6, 2010, cтр. 14

удалось обнаружить интересную особенность пылевого диска, окружающего звезду Вега (а Лиры). Он оказался разделен на внешний и внутренний - по аналогии с Солнечной системой, имеющей внутренний главный пояс астероидов и внешний пояс Койпера, а также известным «двойным кольцом» є Эридана.²² Внешний диск Веги состоит в основном из ледяных объектов, тогда как внутренний, согреваемый лучами звезды - из твердых каменистых тел. Крупный зазор между двумя поясами может объясняться только наличием в нем как минимум одной большой планеты, «расчистившей» силой тяготения окрестности своей орбиты. Радиус внешнего пояса в десять раз превышает радиус внутреннего, так что в промежутке между ними, скорее всего, «скрывается» целая планетная система.

Впечатляет также инфракрасное изображение протопланетного диска вокруг звезды Фомальгаут (α Южной Рыбы)23 - об этот многострадальный диск было сломано немало копий в жарких дискуссиях, его неоднократно «открывали» и «закрывали». Однако после того, как его снимки получил Herschel, вряд ли найдутся желающие оспорить факт его существования. Более того, в среде астрономов зреет убеждение, что подобные диски - вовсе не исключительное явление в звездном мире.

Подводя предварительные итоги работы космической обсерватории Hershel, следует отметить, что она весьма плодотворно отработала отведенный ей срок, предоставив астрономам огромное количество информации, анализировать которую им предстоит еще немало лет. А для будущих поколений этот телескоп запомнится тем, что он открыл нам неведомую ранее «сторону» Вселенной, поведав о ней то, о чем ученые даже не догадывались.

²² BΠB №11, 2008, cTp. 14


²³ BΠB №11, 2008, стр. 14

Таким «увидел» космический телескоп Herschel гигантское молекулярное облако Vela-C - наиболее массивную часть газово-пылевого комплекса в созвездии Парусов, лежащего вблизи главной галактической плоскости. Эта масштабная область звездообразования находится на расстоянии 2300 световых лет. Возраст наиболее старых звезд, обнаруженных в пределах Vela-C, не превышает миллиона лет, что исключительно мало по меркам Вселенной. Здесь формируются светила самых разных масс и размеров. то есть можно сказать, что эта область пространства стала для астрономов своеобразной «лабораторией звездообразования».

Изображение изобилует множеством ранее невиданных деталей. Самые холодные и плотные скопления газа и пыли, излучающие в более длинноволновом диапазоне, зарегистрировал детектор SPIRE (спектральная линия 250 мкм, обозначена условным красным цветом); сравнительно теплое вещество, нагретое излучением близлежащих новорожденных звезд, «светится» в линиях 70 и 160 мкм, сфотографированных прибором PACS и показанных соответственно голубым и зеленым условными цветами. Белые точки, усыпавшие сложное сплетение волокон туманности, представляют собой сжимающиеся газовопылевые сгустки, в которых уже зажглись или в ближайшее время зажгутся новые светила.

Около центра снимка расположено скопление горячих звезд, недоступных детекторам телескопа Herschel (они почти не излучают в дальнем и среднем ИК-диапазонах), однако мы можем наблюдать эффект от их присутствия – неправильной формы «пузырь» сравнительно разреженного горячего газа, «выдутый» в межзвездной материи их мощным излучением и звездным ветром. Это образование имеет индекс RCW 36 (Gum 20). Вещество внутри «пузыря» - главным образом водород сравнительно сильно нагрето и почти полностью ионизировано, то есть его атомы лишены одного или нескольких электронов. Аналогичную природу имеет структура в нижнем правом углу, обозначенная RCW 34, однако ее принадлежность к комплексу Vela-C пока не доказана – возможно, она расположена от нас значительно дальше.

RCW 120 - «галактический пузырь», на стенке которого обнаружился большой сюрприз для исследователей. По массе «сюрприз» как минимум в 8 раз превышает Солнце. По меркам возраста Вселенной ему осталось буквально мгновение (несколько тысяч лет) до превращения в полноценную звезду – голубого гиганта с температурой поверхности в десятки тысяч кельвинов. Еще более удивительный объект стал причиной возникновения «пузыря» - это сверхгигантская звезда, своим мощным излучением «очистившая» пространство вокруг себя от газа и пыли. Ее возраст не превышает 2,5 млн. лет. Сама звезда на снимке не видна, поскольку максимум ее излучения приходится на видимый и ультрафиолетовый спектральный диапазон. Вещества, содержащегося в оболочке «пузыря», хватило бы для образования примерно двух тысяч звезд солнечной массы. RCW 120 находится от нас на расстоянии 4300 световых лет.

Жизнь на Марсе все еще существует?

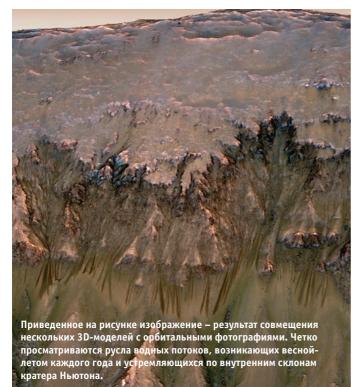
а конференции, посвященной пригодности Марса для жизни в настоящее время, которая прошла 4-5 февраля 2013 г. в Калифорнийском университете Лос-Анджелеса (University of California, Los Angeles) под эгидой Института астробиологии NASA и Центра астробиологии Великобритании, прозвучали несколько интересных докладов на тему поиска доказательств существования органической жизни на соседней планете.

Многие ученые согласны с тем, что в доисторическом, «теплом и мокром» прошлом жизнь на Марсе была (хотя и скептиков в этом вопросе тоже немало). Однако, постоянно получая все новые сведения о бактериях, неплохо себя чувствующих в исключительно неблагоприятных с точки зрения человека средах обитания, многие энтузиасты инициируют дискуссии о современных марсианских живых организмах.

Продолжающиеся исследова-

ния земных регионов, условия в которых максимально сходны с марсианскими (таковыми считают Антарктику как наиболее холодный регион и чилийскую пустыню Атакама - как самый сухой), показывают, что микробы могут находить себе «пропитание» в предельно холодных и обезвоженных средах.¹ Вдобавок появилось немало доказательств того, что в некоторых местах на Марсе может существовать жидкая вода - если не постоянно, то хотя бы сезонно, а это является важной предпосылкой к появлению локальных очагов жизни привычного нам «земного» типа. Большинство **УЧЕНЫХ ВЫСКАЗЫВАЮТСЯ В ТОМ** плане, что исключать возможность существования подобных форм жизни на Марсе нет никаких оснований.

ΒΟΔΑ ΗΑ ПОВЕРХНОСТИ MAPCA?


Особое оживление среди участников конференции вызвали доклады, посвященные результатам наблюдений с использованием камеры High Resolution Imaging Science Experiment (HiRISE), установленной на борту американского аппарата Mars Reconnaissance Orbiter.² Они свидетельствуют о том, что во время марсианских весны и лета вниз по крутым склонам холмов и кратерных валов может течь соленая вода. К настоящему моменту обнаружено шестнадцать таких участков. В основном они расположены на склонах огромного комплекса каньонов Долины Маринера (Valles Marineris). Выявленные следы таких потоков возникают от сезона к сезону, демонстрируя признаки течения густой жидкости по ниспадающим, деформированным погодными условиями руслам.2 Несмотря на то, что рассолы почти наверняка способны возникать

и перемещаться в глубинных слоях, имеются подозрения, что соленая вода на склонах марсианских долин может появляться под действием процесса, известного как «расплывание», когда влага, присутствующая в атмосфере, поглощается водорастворимыми минералами поверхности. Астробиологи призывают уделить особое внимание условиям образования таких рассолов, поскольку в настоящее время о них известно очень мало. С другой стороны, специалисты сходятся на том, что грунтовые воды в глубинах Марса вряд ли могут быть пристанищем для микроорганизмов.

ВЫНОСЛИВЫЕ **МИКРОБЫ**

По мнению некоторых ученых, не разделяемому таким же количеством их оппонентов, марсианская жизнь может оказаться способной выжить даже при отсутствии значительных запасов воды. Например, земные микробы умудряются жить и размножаться в пустыне Атакама или в сухих долинах Антарктиды - местах исключительно засушливых и холодных. Некоторые антарктические микроорганизмы сезонно получают солидные дозы жесткого ультрафиолетового излучения, чему способствуют огромные озоновые дыры, возникающие над материком ежегодно в августе-ноябре. Это еще одна параллель с марсианскими условиями - тонкая атмосфера Красной планеты и отсутствие защитного магнитного поля делают ее весьма уязвимой в плане облучения жесткой радиацией и космическими лучами.

В антарктических долинах микробы «забираются» в трещины скал, чтобы избежать пагубного воздействия ультрафиолета, но в то же время держатся достаточно близко к поверхности, чтобы в их клетках шли процессы фотосинтеза, для которых нужен солнечный свет. Возможно, подобный способ выживания в суровых

Curiosity обнаружил доказательства наличия на Марсе древних водных русел. Они найдены в нескольких местах, включая каменное обнажение, приведенное на этом рисунке и названное в честь канадского озера Хотта.

¹ BΠB №12, 2008, cтр. 16

² BΠB №10, 2006, стр. 11; №11, 2010, стр. 9

³ BΠB №2, 2009, cτp. 21

природных условиях практикуют и марсианские организмы, если они действительно существуют.

После рассмотрения всех возможностей марсоходу Curiosity было дано «напутствие»: в поисках микробной жизни обращать особое внимание на наличие соли.

ВОЗМОЖНЫЕ ИСТОЧНИКИ ЭНЕРГИИ

Достаточно много внимания уделялось перхлорату (соли хлорной кислоты НСІО4) - химическому веществу, которое обнаружил в окрестностях марсианского северного полюса посадочный аппарат Phoenix в 2008 г.3 Многие исследователи считают, что его наличие в грунте может быть причиной того, что предыдущие миссии не обнаружили на Марсе никаких органических соединений - углеродсодержащих «строительных блоков» жизни в известном нам земном ее варианте. Ранее два зонда серии Viking⁵ вели их безрезультатные поиски путем нагревания образцов марсианского грунта до высоких температур, однако попутно в продуктах разложения было обнаружено несколько соединений хлора, присутствие которых объяснили нечистотой эксперимента (предполагалось, что они попали в нагревательную камеру еще на Земле). Позже были проведены подобные исследования грунта, взятого с поверхности пустыни Атакама, в котором точно имелась органика, и в который добавили перхлорат. После нагревания образца в выделяющихся газах нашли те же соединения хлора, что и в эксперименте станций Viking. Таким образом, стало ясно, что в марсианском грунте могли присутствовать органические вещества, но в процессе некорректно подготовленного эксперимента воздействие тепла вызвало реакцию с перхлоратом - сильным окислителем - и уничтожило все их следы. Хотя история с «викинговским» экспериментом интересна сама по

Образцы марсианских пород, исследованных роверами Opportunity и Curiosity, работающих в разных регионах планеты. Слева — скала «Уопмэй» (Wopmay), найденная первым из аппаратов в кратере Эндюрэнс на Полуденной равнине (Meridiani Planum) и сфотографированная камерой Pancam 6 октября 2004 г. Справа — скальный обломок «Шипбэд» (Sheepbed) в точке Йеллоунайф в кратере Гейла. Его снимок получен 18 февраля 2013 г. бортовой камерой MastCam.

Первый образец предположительно сформировался на основе песчаника, обогащенного сульфатами. По мнению ученых, часть его компонентов образовалась в присутствии воды – в первую очередь конкреции (сферические гранулы, которыми усыпана поверхность скального выступа). Скалы на Полуденном плато «запечатлели» древние условия Марса, когда на поверхности планеты имелись большие водоемы, однако они, скорее всего, не были пригодны для жизни из-за высокой кислотности и однородного состава, ограничивающего возможность получать энергию из окружающей среды. Большая концентрация солей должна была сильно «тормозить» метаболизм живых клеток, если бы они тогда существовали.

На изображении справа мелкозернистая осадочная порода представляет собой образец древнего Марса, значительно более благоприятного для жизни. Скала «Шипбэд», скорее всего, сформировалась под водой. Содержавшиеся в ней минералы впоследствии сцементировали частицы породы, а также стали основой для образования конкреций. Поэже скала растрескалась, а трещины заполнились сульфатами, выкристаллизовавшимися из подземных вод. Этот сценарий подтверждают исследования с помощью различных инструментов Curiosity – спектрометра альфа-частиц, камер MastCam, ChemCam, химико-минералогического анализатора. Все они указывают на жидкую среду с нейтральным рН, наличием химических градиентов, снабжавших потенциальные живые организмы энергией, и низкой соленостью.

себе, но наличие перхлоратов позволяет подойти к проблеме органической жизни на Марсе с другой стороны, делая актуальным продолжение этой линии исследований. Эти соединения могут сами по себе служить источником энергии и поддерживать существование микробов в марсианских недрах, где отсутствуют условия для фотосинтеза. Некоторые земные микробы вполне успешно «употребляют в пищу» перхлорат, и нет никаких оснований считать, что потенциальные марсианские микроорганизмы на это не способны.

ВСЕ НЕОБХО Δ ИМОЕ Δ ЛЯ ЖИЗНИ

Уже после завершения конференции в распоряжении ученых появились новые данные, свидетельствующие в пользу обитаемости Марса в наши дни. Анализ образца горной породы, добытого ровером Curiosity, показал что на планете имеются основные вещества, важные для жизнедеятельности микроорганизмов. В порошке из керна, пробуренного марсоходом в пласте осадочных пород вблизи древнего речного русла в крате-

ре Гейла (Gale), ученые выявили серу, азот, водород, кислород, фосфор и углерод – ключевые химические ингредиенты, необходимые для жизни земного типа.

«На фундаментальный вопрос, существовало ли на Марсе пригодное для жизни окружение, мы сегодня можем твердо ответить – да», – заявил Майкл Мейер (Michael Meyer), ведущий специалист программы NASA по исследованию Красной планеты.

Скала, которую сверлил Curiosity, 6 состоит из мелкозернистого аргиллита - типичной осадочной породы, хорошо известной на Земле. Полученные данные подтверждают, что в исследованной области миллиарды лет назад находилось устье речной системы или располагалось дно озера. Существовавшие там условия, возможно, были благоприятны для жизни микробов. Судя по результатам анализов, глинистые минералы, найденные марсоходом, могли быть сформированы в водных растворах, имеющих нейтральную или

слабощелочную реакцию.

Диапазон химических соединений, идентифицированных в образце, весьма внушителен. В частности, в нем обнаружены сульфаты (соли серной кислоты), уже неоднократно встречавшиеся на Марсе, а также сульфиды, которые указывают на возможный химический источник энергии для микроорганизмов.

«Мы можем сказать, что марсианские условия когда-то были благоприятны для жизни, – прямо заявил Джон Гроцингер, координатор проекта Mars Science Laboratory из Калифорнийского Технологического института в Пасадене (John Grotzinger, California Institute of Technology, Pasadena). – И мы готовы к новым, еще более захватывающим открытиям».

Источники:

Mars May Be Habitable Today, Scientists Say. - Rod Pyle, SPACE.com, 25 February 2013.

NASA Rover Finds Conditions Once Suited for Ancient Life on Mars. -NASA/MSL News Release, 12 March 2013.

⁴ ВПВ №8, 2008, стр. 18

⁵ BΠB №6, 2006, cтр. 16

⁶ ВПВ №2-3, 2013, стр 19

⁵ BΠB №6, 2006, cтр. 16

Марсоход Curiosity **переключен** на запасной компьютер

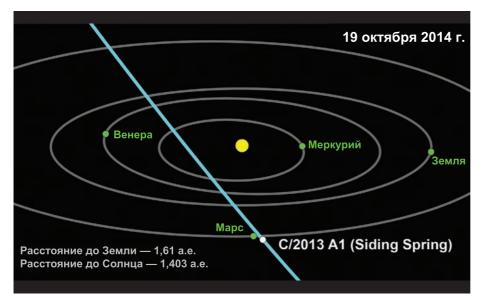
отрудники группы сопровождения ровера Curiosity¹ переключили его на запасной бортовой компьютер из-за проблем с флэш-памятью на основном компьютере. Это произошло 27 февраля, после того, как инженеры, пытаясь получить информацию, накопленную за сутки, зафиксировали отказ одной из ячеек памяти. Специалисты считают, что ячейка была разрушена попаданием тяжелой космической частицы межзвездного происхождения.

Два бортовых компьютера мобильной лаборатории, которые в NASA обозначили буквами А и В, полностью дублируют функции друг друга. Во время перелета к Марсу и посадки на него межпла-

¹ BΠB №8, 2012, ctp. 12

нетной станцией управлял компьютер В. После контакта спускаемого аппарата с марсианской поверхностью 6 августа 2012 г. он был переведен в резервный режим, а системами марсохода начал управлять компьютер А – до того момента, когда в нем произошел сбой. Инженеры переключили управление ровером на резервный компьютер и приступили к перепрограммированию отказавшего блока, пытаясь исключить поврежденную ячейку из работы устройства. Однако 5 марта на Солнце произошел так называемый корональный выброс массы - наше светило извергло гигантское облако плазмы, двинувшееся в направлении Марса. Поэтому, чтобы уменьшить риск

выхода из строя последнего оставшегося компьютера, группа сопровождения решила подстраховаться и перевести Curiosity в более защищенный (так называемый «спящий») режим.


Тяжелые космические частицы, летящие с большой скоростью, представляют особую угрозу электронным приборам межпланетных станций и потенциальным космическим путешественникам. Землю, а также искусственные спутники на низких околоземных орбитах защищает от основной массы этих частиц магнитное поле планеты. Однако при удалении от нее это поле быстро ослабевает, а у Марса оно практически отсутствует. Поэтому в электронике на борту космических аппаратов, предназначенных для

исследований других тел Солнечной системы, используются специальные технологии. Если для «домашних» персональных компьютеров нормой является технологический процесс 22-32 нм, то микросхемы, установленные на борту Curiosity, изготовлены по 250-нанометровому процессу - считается, что крупные элементы менее чувствительны к попаданиям высокоэнергетических частиц.

К счастью, солнечный шторм оказался не таким мощным, как ожидалось, поэтому спустя пару дней марсоход был выведен из спящего режима и приступил к выполнению научной программы. В настоящее время работоспособность компьютера А удалось восстановить, и в дальнейшем он будет дублировать компьютер В.

Это мозаичное изображение горы Шарп (другое ее название – Aeolis Mons, «Эолова гора») составлено из снимков, сделанных камерой Mastcam марсохода Curiosity. Цвета на нем сбалансированы таким образом, чтобы картина была максимально приближена к той, которую бы мы увидели в условиях освещенности, имеющихся на Земле. После такой обработки специалистам легче распознавать минералы на исследуемом участке марсианской поверхности, сравнивая их с земными. Интересно, что небо в итоге оказалось почти привычного нам голубого цвета – это вызвано спецификой процесса обработки. На самом деле для человека, находящегося на Марсе, оно выглядело бы светло-коричневым с горчичным оттенком. На врезке – необработанная версия. Гора Шарп, расположенная вблизи центра кратера Гейла, возвышается над кратерным дном примерно на 5 км и имеет слоистую структуру, хорошо заметную на снимках. Ее подножье выбрано в качестве главной цели миссии ровера Curiosity. Приведенное изображение составлено по результатам съемки камеры с фокусным расстоянием 100 мм, осуществленной 20 сентября 2012 г. – на 45-й марсианский день (сол) после прибытия мобильной лаборатории на соседнюю планету.

Схема, показывающая ориентацию орбиты кометы C/2013A1 Siding Spring относительно орбит внутренних планет Солнечной системы и их положение по состоянию на середину октября 2014 г.

Комета угрожает Марсу

е так уж много времени прошло с тех пор, как земные средства массовой информации пестрели сообщениями о возможном столкновении Красной планеты с астероидом 2007 WD5.1 И вот наш сосед по Солнечной системе снова оказался «под угрозой». Согласно предварительным вычислениям, проведенным сотрудниками Калифорнийского технологического института, 19 октября 2014 г. с Марсом сблизится достаточно крупная комета Сайдинг Спринг (C/2013A1 Siding Spring), причем шансы того, что она с ним все же столкнттся, в настоящее время оцениваются примерно как олин к шестистам

Комета была обнаружена 3 января 2013 г. известным австралийским

астрономом Робертом Макнотом (Robert McNaught) – абсолютным рекордсменом по числу таких открытий. Позже ее изображения удалось найти на снимках, сделанных еще в октябре прошлого года, и по совокупности наблюдений вычислить орбиту «хвостатой гостьи». Конечно же, по мере поступления новых данных ее траектория будет уточняться, но сейчас уже можно утверждать, что C/2013A1 практически наверняка подойдет к Марсу на расстояние, не превышающее 300 тыс. км, что почти на четверть меньше среднего радиуса орбиты Луны.

Группы сопровождения марсоходов Opportunity и Curiosity,² а также орбитальных зондов Mars Odyssey, Mars Express и Mars Reconnaissance Orbiter³ уже планируют наблюдения кометы с помощью бортовых камер межпланетных аппаратов. Предполагается, что для «марсианских» наблюдателей ее суммарный блеск в день максимального сближения превысит нулевую звездную величину. С «земной» точки зрения яркость C/2013A1 окажется около 8-й величины, и ее можно будет увидеть в небольшие телескопы и бинокли.

Текущая орбита кометы представляет собой гиперболу с эксцентриситетом чуть больше единицы, то есть С/2013А1, вероятнее всего, обладает достаточной кинетической энергией, чтобы преодолеть притяжение Солнца и уйти в межзвездное пространство - если, конечно, ей не «помешает» Марс. Астрономы признают, что вероятность этого достаточно низка (из-за сравнительно слабой гравитации Красной планеты и ее небольшого диаметра), однако они не возражали бы против возможности впервые непосредственно пронаблюдать столкновение кометы с крупным каменистым телом Солнечной системы, тем более что для этого в настоящее время имеется масса технических средств, включая автоматические аппараты на марсианской поверхности. До сих пор ученым удавалось регистрировать лишь последствия падений кометоподобных объектов на газовый гигант Юпитер.4


Источник: Comet 2013 A1 (Siding Spring) will make a very close approach to Mars in October 2014. - NASA/JPL Near-Earth Object Program Office, March 5, 2013.

¹ BΠB №1, 2008, стр. 22

² ВПВ №1, 2004, стр. 22; №9, 2009, стр. 23; №8, 2012, стр. 12

³ ВПВ №4, 2006, стр. 12; №3, 2009, стр. 29; №9, 2009, стр. 21; №11, 2010, стр. 9

⁴ ВПВ №12, 2005, стр. 45; №7-8, 2009, стр. 38; №7, 2011, стр. 8

Крутой берег песчаной «реки»

есмотря то, что атмосфера Красной планеты весьма разрежена, марсианские ветра, тем не менее, достаточно сильны, чтобы перемещать по поверхности песчаные дюны. Поэтому такие дюнные ландшафты регулярно фотографируются камерой HiRISE, установленной на борту американского аппарата Mars Reconnaissance Orbiter. На приведенном изображении показан регион Ауреум Хаос (Aureum Chaos) – нагромождение крупных обломков древних скал, разрушенных миллиарды лет назад в ходе каких-то мощных тектонических процессов. На краях обломков обычно видны слои горных пород, а в ущельях между ними накапливается принесенный ветром песок.

Стена одного из таких ущелий пересекает снимок по диагонали. Хорошо заметна разница состава разрушенной скалы и под-

стилающих пород (они имеют отчетливый красно-оранжевый цвет). Темные протяженные песчаные холмы покрывают как дно ущелья, так и поверхность скалы, причем свойства песчинок «вверху» и «внизу», очевидно, тоже отличаются - об этом говорит разная форма дюн. Можно рассмотреть два типа скальных обнажений желтоватого и почти белого цвета. Вероятно, они представляют собой различные слои породы, которые напластовались задолго до того, как сформировался Ауреум Хаос.

Снимок сделан 10 февраля 2013 г., его центр имеет координаты 3,65° ю.ш., 333,75° в.д., разрешение достигает 27 см на пиксель. Солнце в момент съемки находилось на высоте 43° над горизонтом. Север вверху.

Источник: Looking for Changes in Colorful Aureum Chaos

Названия «Цербер» и «Вулкан» выбраны голосованием

етвертый и пятый спутники Плутона -Р4, поперечник которого составляет от 13 до 34 км, и Р5 размером от 15 до 24 км - были открыты в 2011 и 2012 гг.¹ с помощью космического телескопа Hubble группой под руководством Марка Шуолтера (Mark Showalter) из Института проекта SETI, занимающегося проблемами поиска внеземных цивилизаций.

Согласно правилам Международного астрономического союза, спутники Плутона должны получать имена персонажей греко-римской мифологии, связанных с подземным царством Аида. Имена древнеримского бога огня Вулкана и трехглавого пса Цербера победили в интернет-голосовании, которое организовали ученые из исследовательской группы Шуолтера. Окончательное решение о наименовании этих небесных тел астрономы примут примерно месяцем позже.

В голосовании приняли участие более 450 тыс. человек. Вариант «Вулкан» набрал более 175 тыс. голосов, «Цербер» -99,4 тыс. голосов.

¹ BΠB №7, 2011, cтр. 16; №7, 2012, стр. 23

На этом снимке, сделанном Камерой широкого поля (Wide Field Camera 3) космического телескопа Hubble, видна далекая карликовая планета Плутон и пять ее спутников. Зеленым кольцом обведен последний из них по порядку открытия - Р5, получивший предварительное обозначение S/2012 (134340) 1. Дальнейшие наблюдения этих объектов помогут специалистам спланировать их съемку межпланетной станцией New Horizons (NASA), которая должна подлететь к Плутону в июле 2015 г.

момента своего образования наша планета неоднократно сталкивалась с многочисленными астероидами различных размеров. Особенно часто такие столкновения происходили в древние эпохи, когда пространство в окрестностях земной орбиты не было «расчищено» от остатков протопланетного материала. Недавний «визит» крупного метеорита, взорвавшегося над Южным Уралом, 1 убедительно продемонстрировал, что с «угрозой из космоса» нам по-прежнему следует считаться. 2 Возможные последствия столкновений уже неоднократно моделировались и описывались, активно идет изучение астроблем – метеоритных кратеров, оставшихся после них. 3 С другой стороны, пролеты астероидов даже на небольших расстояниях от Земли без столкновений не оказывают на нее практически никакого влияния. А как «переживают» подобные сближения сами астероиды?

Этим вопросом озадачился профессор планетологии Массачусетского технологического института Ричард Бинзель (Richard Binzel, Massachusetts Institute of Technology). Его исследования показывают, что многие малые тела Солнечной системы во время пролетов вблизи Земли испытывают приливные возмущения, достаточные для того, чтобы вызвать заметную сейсмическую активность. Космонавт, который окажется свидетелем «астероидотрясения», сможет увидеть, как астероидная поверхность опускается и поднимается с амплитудой несколько сантиметров, над ней возносятся облака пыли, с крутых склонов скатываются отдельные крупные обломки. Все это справедливо по отношению к объектам, представляющим собой «кучи щебня» – монолитные каменные или металлические тела, конечно же, намного лучше противостоят приливным деформациям.

На мысль о том, что подобные события в определенных случаях имеют место, Ричарда Бинзеля натолкнули результаты спектральных исследований околоземных астероидов. С течением времени их поверхность темнеет и приобретает красноватый оттенок под действием солнечного и космического излучения, а также благодаря постоянной бомбардировке микрометеоритами. Однако среди малых тел, регулярно сближающихся с Землей, обнаружилось несколько объектов, цвет которых свидетельствует о том, что они почти не подвержены такому «космическому выветриванию». Ученый считает, что «свежее», более светлое вещество может подниматься к поверхности и перемешиваться с потемневшим благодаря «астероидотрясениям», вызванным земной гравитацией. Энергии приливного взаимодействия иногда оказывается достаточно, чтобы мелкие частицы внешних

слоев астероида вообще отделились и рассеялись в космическом пространстве.

Для малых тел нельзя использовать шкалу Рихтера, по которой оценивается мощность землетрясений. Вместо этого «астероидотрясения» предложено измерять в единицах ускорения (1g – ускорение, вызываемое силой тяжести на поверхности Земли). Астероидная сейсмическая активность предположительно находится в диапазоне от тысячных до миллионных долей g. Это исключительно малые величины, но по сравнению с силой притяжения самих астероидов такие возмущения вполне ощутимы и могут играть заметную роль в их эволюции.

Удачной возможностью для проверки догадок профессора Бинзеля стало сближение с Землей до расстояния менее 30 тыс. км открытого в прошлом году «небесного камня», получившего обозначение 2012 DA14.5 Он подошел к нам достаточно близко как для того, чтобы подвергнуться приливным деформациям в гравитационном поле нашей планеты, так и для того, чтобы такие деформации можно было зарегистрировать с помощью наземных инструментов. Главным из них стал 70-метровый радар NASA в Голдстоуне, уже несколько десятилетий «снабжающий» астрономов детальными снимками сравнительно близких небесных тел.⁶ Радиолокационные данные будут использованы для создания трехмерной анимации формы объекта во время пролета. На оптических обсерваториях велись наблюдения цвета и видимой яркости астероида, а также периодичности ее колебаний, связанной со скоростью его вращения вокруг своей оси. Резкие изменения любого из этих параметров могут быть признаком «астероидотрясения». Обработку полученных результатов специалисты планируют завершить к середине года.

Источник: Possible Seismic Activity on Asteroid 2012 DA14. — NASA Science, Feb. 14, 2013

- ¹ ВПВ №2-3, 2013, стр. 40
- ² ВПВ №7, 2011, стр. 4
- ³ ВПВ №4, 2006, стр. 36
- 4 ВПВ №5, 2009, стр. 28
- 5 ВПВ №12, 2012, стр. 35
- ⁶ ВПВ №12, 2011, стр. 19; №12, 2012, стр. 24

КНИГИ НА АСТРОНОМИЧЕСКУЮ ТЕМАТИКУ

астрономический календарь на 2013 г.

(ГАО НАНУ).

ГО22. Грин Б. Скрытая реальность. Автор рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные по пути, ведущему к познанию истины.

В010. Виленкин А. Мир многих миров. В своей популярно написанной книге профессор университета Тафтса (США) Алекс Виленкин знакомит читателя с последними научными достижениями в сфере космологии и излагает собственную теорию, доказывающую возможность и даже вероятность существования бесчисленных параллельных вселенных. Выводы из его гипотезы ошеломляют...

Архангельская И.В., Розенталь И.Л., Чернин А. Д. ский вакуум. В этой книге идет речь о гипотезе космического вакуума, о многомерных космологических моделях

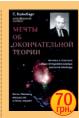
(как с компактифициро-

ванными, так и с макроскопическими дополнительными измерениями), а также о других идеях, возникших в физике под влиянием новейших открытий в космологии.

Б025. **Бернацкий А.** Таинственная планета Земля. Наша планета хранит еще немало тайн. Эта книга рассказывает об удивительных, порой непостижимых

явлениях, наблюдаемых

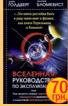
в атмосфере,


гидросфере и

литосфере Земли. Ученые пытаются найти им объяснение, одна гипотеза сменяет другую. Но до сих пор однозначного решения загадок планеты по имени Земля у них нет

27. Бороденко В.А. От Большого взрыва к жизни. Экскурс в мироздание. В настоящей книге кратко излагаются и когда возникла наша Вселенная, Солнечная система, как зарождалась и развивалась

жизнь на Земле, как познавался во многом еще малоизученный мир.


)30. Вайнберг **С.** Мечты об окончательной теории. В своей книге автор дает ответ на интригующие вопросы: «Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого

анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?»

011. Гамов Д. Моя мировая линия: неформальная автобиография Автор крупных открытий в области теоретической физики, а также блестящий популяризатор науки. Мы рады познакомит читателя с его автобиографией

написанной в увлекательной форме. Для читателй физиков и нефизиков интересующихся историей физики и жизнью замечательных ученых.

030. Голдберг Д. Вселенная. Руководство по эксплуатации. Как выжить среди черных дыр, временных парадоксов и квантовой неопределенности. Эта книга – идеальный путеводитель по самым интригующим вопросам современной физики

Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я.Перельмана С.Хокинга, Б.Брайсона и Б.Грина.

020. Грин **Б.** Ткань космоса. Пространство. время и текстура **реальности.** Брайан . Грин — один из ведущих физиков современности - приглашает нас в очередное удивительное путешествие вглубы мироздания, которое

поможет нам в совершенно ином ракурсе взгля нуть на окружающую нас действительность В книге рассматриваются фундаментальные вопросы, касающиеся классической физики квантовой механики и космологии

<mark>021. Грин Б.</mark> Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории. Сочетая научное осмысление и изложение, столь же элегантное, как и объяснения, даваемые теорией, автор срывает

завесу таинства с теории струн, представляя миру Вселенную, состоящую из 11 измерений, в которой ткань пространства рвется и восстанавливается, а вся материя порождена вибрациями микроскопических петель энергии.

030. Захаров В. Тяготение. От Аристотеля до Эйнштейна

В этом учебном пособии излагается релятивистская механика. Основное внимание уделяется теории тяготения и космологии. Книга рассчитана на

преподавателей и студентов вузов; также будет полезна учителям и учащимся старших

1010 Иллис Г.M. Революции в астрономии, космологии и физике. В книге в качестве последователь ных переломных этапов в развитии естествознания . выделены четыре глобальные естественнона**учные** революции (ари-

и постэйнштейновская). Каждая из них одновременно происходила в астрономии космологии и физике, сопровождаясь радикальным изменением космологических представлений и физического фундамента.

020. Куликовский П.Г. Справочник любителя астрономии. В справоч нике изпагаются залачи и методы современной астрономии, дается описание небесных объектов – звезд, планет, комет и др. Описываются методы астрономических

наблюдений, доступные любителям. Обширный справочный материал полностью обновлен и отражает последние достижения. Справочник предназначен для астрономов-любителей, преподавателей астрономии, участников астрономических кружков, лекторов.

П040. Леви Д. Путеводитель по звездному небу. Путеводитель по завораживающим красотам ночного небосклона. Помимо карт звездного неба, книга солержит сведения об интереснейших астрономиче ских объектах рекомендации по

их наблюдениям, а также описания необходимых инструментов.

П010. Перельман Я.И. Занимательная астро-

В увлекательной форме рассказано о важнейших явлениях звезлного. неба. Многие явления, кажущиеся привычными и обыленными показаны с совершенно новой и неожиданной стороны

раскрыт их действительный смысл. Развернута широкая картина мирового пространства и происходящих в нем удивительных явлений возбуждающих интерес к удивительной науке -

 Перельман М. Наблюдения и озарения, или Как физики выявляют законы природы. От Аристотеля до Николы Теслы. Все мы знакомы с открытиями, ставшими заметными вехами

на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей

26. Перельман М. Наблюдения и озарения, или Как физики выявляют законы природы. От кванта до темной материи. Книга не просто захватывает она позволяет почувствовать себя посвященными в великую тайну. Вместе

с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогут эту красоту раскрыть. Эта книга рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки

027. Перельман М.Е. І. А ПОЧЕМУ ЭТО ТАК? Физика вокруг нас в занимательных беседах, вопросах и ответах. В книге собрано более 400 задач-вопросов по физике (вместе с ответами), которые чаще всего возникают

или, по крайней мере, должны возникать у каждого любознательного подростка при взгляде вокруг себя

КНИГИ НА АСТРОНОМИЧЕСКУЮ ТЕМАТИКУ

С042. Сурдин В.Г. Разведка далеких планет. Мечта каждого астронома — открыть новую планету. Раньше это случалось редко — одна-две за столетие. Но в последнее время планеты открываются часто. В книге рассказано о том, как велись и ведутся поиски планет в Солнечной системе и за ее пределами.

X020. Хван М.П. Неистовая Вселенная: От Большого взрыва до ускоренного расширения, от кварков до суперструн. Рассматриваются проблемы рождения нашей Вселенной в результате Большого взрыва, исследуется финальная стадия эволюции звезд, космический вакуум как антигоавитация.

Д009. Данлоп С. Атлас звездного неба. Атлас предназначен для того, чтобы обеспечить любителей астрономии всей необходимой информацией, позволяющей им легко прокладывать путь по ночному небу. Он включает карты, охватывающие большие участки неба, и более детальные карты каждого созвездия в отдельности.

KAK BAKABAT

В УКРАИНЕ*

(063) 073-68-42; (067) 370-60-39

02152, Киев, Днепровская набережная, 1-A, офис 146.

info@universemagazine.com www.universemagazine.com

В РОССИИ**

(499) 253-79-98; (495) 544-71-57

123056, Москва, М. Тишинский пер., д. 14/16

elena@astrofest.ru www.sky-watcher.ru/shop www.telescope.ru

По28.
Перельман М.Е.
II. А ПОЧЕМУ
ЭТО ТАК?
Физика в гостях
у других наук
в занимательных
беседах, вопросах
и ответах.
В книге собрано
более 400 задачвопросов по физике,
а также биологии,
географии и

астрономии (вместе с ответами).

П032. Попова А.П. Занимательная астрономия. В книге представ-

В книге представлен увлекательный материал в игровой форме: «Что? Где? Когда?», кроссвордов и чайнвордов, тестов, детективных астрономических текстов в стихотворной форме и

занимательных вопросов. Читатель совершит интересное путешествие в мир небесных тел и явлений, узнает историю космических открытий и т.п.

Помровский В.В. Космос, Вселенная теория всего почти без формул.

Когда и как появилось понятие «естествознание» в современной его трактовке? Оказывают ли материальные тела влияние на время? Можно ли

создать черную дыру искусственно? Что было в начале Вселенной? Будет ли расширение Вселенной продолжаться бесконечно? Почему мы не замечаем остальных измерений?

П052. Поляхова Е.Н. Космический полет с солнечным парусом. Излагается теория

Излагается теория космического полета с двигателем особого типа — солнечным парусом, создающим малую, но непрерывно действующую тягу благодаря давлению

на него солнечного света. Рассматриваются полеты с солнечным парусом как в околоземном пространстве, так и в направлении Солнечной системы, например к Марсу...

С025. Ситников В.П. Я познаю мир. Кто есть кто в мире звезд и планет. Из чего сделаны звезды? Светит ли Солнце все время одинаково? Могут ли столкнуться планеты? На какой планете самые высокие горы? Почему двигаются материки?

Что такое сейсмический пояс? Как метеорологи предсказывают погоду? В книге есть ответы на эти и многие другие вопросы. Каждый почемучка с удовольствием изучит ее от корки до корки!

С037. Сурдин В.Г. Звезды. Третья книга из серии «Астрономия и астрофизика» содержит обзор современных представлений о звездах Рассказано о названиях созвездий и именах звезд.

о возможности их наблюдения ночью и днем, об основных характеристиках звезд и их классификации

С050. Семке А. Увлекательная астрономия. Предлагаемая юным читателям книга познакомит их с мифами, легендами разных народов о звездах, происхождении земли и Вселенной Интересные факты,

задачи и практические работы повысят мотивацию к изучению астрономии.

С041. Сурдин В.Г. Путешествия к Луне: Наблюдения, экс-педиции, исследования, открытия. Книга рассказывает о Луне: о ее телескопических наблюдениях, об изучении ее поверхности и недравтоматическими аппаратами и о пилотиомемых

экспедициях по программе Apollo. Приведены исторические и научные данные о Луне, фотографии и карты ее поверхности, описание коомичести аппаратов. Обсуждаются возможности дальнейшего исследования Луны. пеоспективы ее освоения.

С060. Ситников В.П., Шалаева Г.П., Ситникова Е.В. Кто есть кто в мире звезд и планет. Из чего сделаны звезды? Светит ли Солние все

время одинаково? Могут ли столкнуться планеты? На какой планете самые высокие горы? Почему двигаются материки? Чо такое сейсмический пояс? Что вызывает

чо такое сеисмический поис? что вызывает приливы? Как метеорологи предсказывают погоду? Ответы на эти и другие вопросы вы найдете в этой книге.

Циолковский К.Э. Труды по воздухоплаванию.

Работы выдающегося русского и советского ученого, основоположника современной космонавтики открыли новую страницу техники

без существенного применения достижений в области математики и механики. Автор использовал в своих трудах лишь арифметику, алгебру и начала анализа бесконечно малых величин, обосновав с помощью них всю ракетную технику...

Ч012. Чернин А.Д. Физика времени — одно из самых фундаментальных в нашей системе знаний. В простой и наглядной форме, без использования математических формул автор рассказывает о развитии научных представления о нем,

об основных идеях современной физической концепции времени. Дается изложение важнейших вопросов физики, связанных с природой времени: однородность времени и закон сохранения энертии, относительность одновременности, прошлое и будущем Вселенной, стрела времени....

4020. Чернин А.Д. Звезды и физика. Пульсары, вспыхиванощие рентгеновские звезды, удивительная звезда SS 433, короны галактик, квазары, реликтовое излучение — главные темы настоящей книги. Предназначена для

студентов, преподавателей и широкого круга заинтересованных читателей.

Черепащук А.М., Чернин А.Д. Вселенная, жизнь, черные дыры. Человека всегда интересовало, где он живет, откуда все появилось, есть ли жизнь на Марсе и что со всем этим будет дальше.

В книге изложено современное представление о возникновении и развитии Вселенной; о том, как ведутся поиски жизни вне Земли и о результатах этих поисков; о фантастических свойствах черных дыр и о том, как их находят и «взвешивают»; о самых последних откоытиях в астоофизике.

РАЗУМНАЯ ЖИЗНЬ

ВО ВСЕЛЕННОЙ

Ульмшнайдер П. Разумная жизнь во Вселенной. Автор пытается объединить знания, накопленные человечеством в различных областях астрофизике, биохимии, генетике,

геологии. Но в книге, как и в современной науке, нет ответа на вопрос, что же такое разум и какова вероятность возникновения разумной жизни во Вселенной.

3010. Под ред. Джорджа Эллиса. Далекое будущее Вселенной. Просуществует ли Вселенная еще сто миллиардов лет? Не превратится ли наше нынешнее пространство в некое иное пространство

с иными физическими законами? Можем ли мы представить богословие будущей вселенной? Ведущие богословы, философы и ученые вместе обсуждают далекое прошлое и далекое будущее...

Я040. Янчилина Ф. По ту сторону звезд. Что начинается там, где заканчивается Вселенная? В книге в живой и увлекательной форме рассказывается о самых тонких и сложных проблемах космологии и физики микромира. Книга написана

она будет интеерсна специалистам, а с другой стороны – понятна и доступна читателям без физико-математического образования и даже школьникам.

ЖЕНШИНЫ BKOCMOCE

Александр Железняков академик Российской академии космонавтики им. К.Циолковского специально для журнала «Вселенная, пространство, время»

> егодня уже никого не удивить тем фактом, что на околоземной орбите работают представительницы прекрасной половины человечества. Они трудятся в космосе наравне с сильным полом, и часто их деятельность оказывается результативнее, чем у космонавтов-мужчин.

> Но дело не всегда обстояло таким образом. И хотя первая женщина совершила космический полет всего на два года позже первого мужчины,1 потребовалось еще два десятка лет, чтобы женские путешествия за пределы атмосферы перестали быть редкостью.

Первый набор

О возможности полета женщины в космос конструкторы стали задумываться еще в то время, когда шло проектирование первых пилотируемых космических кораблей - «Востока» в СССР и Mercury в США. Уже тогда было понятно, что некоторые бортовые системы (в первую очередь - система жизнеобеспечения) должны иметь свои особенности в зависимости от того, кто находится в кабине пилота.

Правда, «осмыслить» эти выводы тогда не было возможности: каждая великих держав стремилась первой отправить человека на орбиту.

 1 Как, несомненно, помнят наши читатели, ею стала советская космонавтка Валентина Терешкова.

Поэтому, «сделав отметку в блокноте», инженеры бросили все свои силы на решение главной задачи. Однако никто и представить себе не мог, что этими вопросами придется заняться не через десять или двадцать лет, а всего через год после первого полета в космос. Причина этого крылась в политике - точнее, в той безумной гонке за космическими приоритетами, которая велась в начале 1960-х годов.

В Советском Союзе вопросом отправки женщины в космос «озадачились», во второй половине 1961 г. Поговаривают, что идея принадлежала Николаю Каманину, руководившему подготовкой советских космонавтов. Так это было, или же идею высказал кто-то другой не столь важно. Главное, что предложение осуществить женский полет раньше, чем это сделают американцы, нашло горячую поддержку в руководстве И работа закипела.

Официально история первого женского набора в отряд советских космонавтов началась после принятия Президиумом ЦК КПСС постановления № 10/XIX, разрешавшего Военновоздушным силам, в ведении которых находилась пилотируемая космонавтика. произвести набор еще 60 курсантов, в том числе пяти женщин. До конца года были уточнены требования, которые предъявлялись к кандидатам в космонавтки, а также сроки и порядок отбора.

Первый этап отбора проводился в рамках структуры ДОСААФ.² Он охватывал спортсменок из аэроклубов Москвы, Рязани, Ярославля, Курска, Орла, а также членов сборных команд СССР по авиационным видам спорта. Вскоре в ЦК ДОСААФ поступили кандидатов и другие документы. Всего было рассмотрено около 800 «отборочных дел».

В январе 1962 г. первичный «отсев» был завершен, после чего направление на медкомиссию получили 58 женщин. «Горнило медицины» удалось пройти лишь каждой четвертой желающей, что свидетельствует о том, насколько жесткими были критерии отбора. мандатной комиссии осталось всего пять: кандидаток Жанна Дмитриевна Ёркина, Татьяна Дмитриевна Кузнецова, Валентина Пономарева, Баяновна Соловьева и Валентина Терешкова. Владимировна и образовали первую женскую группу в отряде советских космонавтов. Их начали готовить к полету в космос, который предполагалось осуществить в самом начале 1963 года.

В TOM же составе группа просуществовала ДО октября 1969 г., когда она была официально

² Добровольное общество содействия армии, авиации и флоту.

Савицкая Светлана Евгеньевна

Первая в мире женщина, осуществившая выход в открытый космос. С 19 по 27 августа 1982 г. в качестве космонавта-исследователя совершила полет на кораблях «Союз Т-5», «Союз Т-7» и орбитальной станции «Салют-7». С 17 по 29 июля 1984 г. в качестве бортинженера участвовала

в экспедиции на корабле «Союз Т-12» и орбитальной станции «Салют-7». Во время этого полета Савицкая совершила выход в открытый космос. Готовилась к полету на станцию «Салют-7» в 1986 г. в качестве командира первого в мире чисто женского экипажа (три женщины-космонавта), но этот полет не состоялся.

Райд Сэлли Кристен

Первая американка, побывавшая в космосе (шаттл Challenger, 1983 г.).

расформирована. Из «первой пятерки» выйти на орбиту в итоге удалось только Валентине Терешковой...

«Меркурий-13»

А теперь вспомним о том, как обстояли дела «по ту сторону океана».

В Америке история женского полета началась осенью 1959 г., когда первые астронавты уже приступили к тренировкам, но до космических стартов еще было достаточно далеко. В сентябре лучшие авиаторы страны собрались в Майами на «Авиационный конвент». Его посетили два ведущих представителя американской авиационно-космической медицины: Уильям Лавлэйс (William Lovelace) и Дональд Фликинджер Flickinger). Первый был директором частной клиники, В которой производился отбор астронавтов программы Mercury, Военнопредставлял медицину воздушных сил США. Оба активно интересовались вопросом, готовы ли женщины отправиться в космос, если им предоставят такую возможность.

Медики не ожидали, что подавляющее большинство претенденток, с которыми они беседовали на конвенте, выразит горячее желание участвовать в штурме космоса. Было решено провести необходимые обследования. В качестве «подопытного выбрали кролика» 28-летнюю Джеральдину Кобб (Geraldyn Cobb), пилота компании Aero Commander. В клинику Лавлэйса прибыла в феврале 1960 г. Исследования проводились в частном порядке, без допуска прессы. Их оказались настолько результаты хороши, что Кобб направили на вторую фазу тестирования в лабораторию госпиталя Администрации по делам ветеранов, а затем - на двухдневное психологическое и медиобследование

Семь американок из группы FLAT (First Lady Astronaut Trainees — Mercury 13), прибыли на мыс Канаверал в 1995 г. по приглашению Эйлин Коллинз, первой женщины – командира «шаттла». Снимок сделан на фоне стартового комплекса 39В с многоразовым кораблем Discovery. Слева направо: Дженора Джессен (Стамбау), Уолли Фанк, Джерри Кобб, Джерри Трухилл (Слоун), Сара Ратли (Горелик), Майртл Кейджл, Бернайс Стидман.

авиастанцию Пенсакола во Флориде. После завершения финальной стадии тестов врачи признали Кобб полностью годной к космическим полетам в соответствии с критериями NASA.

Сообщение о прохождении летчицей медицинского обследования и его отличных результатах было сделано Лавлэйсом на международной конференции в Стокгольме. Однако в группу астронавтов NASA Джеральдин Кобб не зачислили – в Штатах на тот момент не было соответствующей программы. А что-то менять для удовлетворения чьих-то амбиций ни у кого желания не возникло.

Но в СССР стокгольмский доклад доктора Лавлэйса был воспринят иначе, став «толчком» к началу подготовки женского полета.

Американцы же ограничились неофициальным отбором. В 1961 г. в клинике Лавлэйса было обследовано еще 25 летчиц. После подведения

итогов 13 из них были признаны медиками годными к специальной подготовке в качестве кандидатов в астронавты.

В группу, ныне известную группа Mercury-13 (мужская называлась Mercury-7),3 вошли: Рэй Харли Эллисон (Rhea Hurrle Allison), Майртл Кейджл (Myrtle Cagle). Джеральдин Кобб, Дженет Дитрих Dietrich), Мэрион (Marion Dietrich), Мэри Уоллес Фанк (Mary Walles Funk), Capa Ли Горелик (Sarah Lee Gorelik), Джейн Бриггс Харт (Jane Briggs Hart), Джин Хиксон (Jean Hixson), Айрин Левертон (Irene Leverton), Джеральдин Гамильтон Слоун (Geraldine Hamilton Sloan), Бернайс Тримбл Стидман (Bernice Trimble Steadman) и Дженора Стамбау (Gene Nora Stumbough).

Однако никому из них так и не удалось

Уитсон Пегги Аннетт

Первая женщина, командовавшая Международной космической станцией. Мировой рекордсмен среди женщин по суммарной длительности пребывания в космосе (374 дня 17 часов 21 минута 28 секунд).

Кондакова Елена Владимировна

Первая женщина, участвовавшая в длительной космической экспедиции, на данный момент единственная гражданка Российской Федерации, летавшая в космос после распада СССР. Ее первый полет начался 4 октября 1994 г. в составе экипажа корабля «Союз ТМ-20», возвращение на Землю состоялось 22 марта 1995 г. после 5-месячного пребывания на орбитальной станции «Мир». Второй полет Кондакова осуществила на американском шаттле Atlantis в качестве специалиста миссии STS-84 с 15 по 24 мая 1997 г. В программу полета входила шестая стыковка корабля многоразового использования со станцией «Мир».

³ ВПВ №4, 2009, стр. 5

Коллинз Эйлин Мэри

Первая американка, командовавшая шаттлом.

Хелмс Сьюзен Джейн

Мировая рекордсменка по продолжительности работы в открытом KOCMOCE.

отправиться на орбиту - несмотря на то, что они приложили к этому немало усилий. И не только физических. В 1962 г. Джеральдина Кобб и Джейн Харт встречались с вице-президентом США Линдоном Джонсоном (Lyndon Johnson). В частной беседе Джонсон воодушевился идеей полета женщины в космос, но в официальной поддержке отказал.

Встречались летчицы и с другими политиками, с военными, выступали перед конгрессменами. Но убедить руководство США в своей правоте так и не смогли.

Идаже старт Валентины Терешковой, который состоялся во многом благодаря деятельности Кобб и ее подруг, ничего не изменил. Единственной формальной уступкой со стороны NASA стало назначение Джеральдины Кобб консультантом директора агентства. Правда, с ней ни разу никто не советовался.

Вскоре летчицы возвратились к своей обычной жизни, и на 30 лет об этой инициативе забыли все. Даже историки вспомнили о ней только тогда, когда «мир стал иным».

На орбите – «Чайка»

Пока американки вели борьбу за право полететь в космос, в Советском продолжалась подготовка реального женского полета. Было решено, что женщина побывает на орбите в ходе второго группового полета вместе с одним из космонавтов-мужчин.

Основным пилотом была выбрана Валентина Терешкова, дублером -Валентина Пономарева. В качестве резервного пилота готовилась Ирина Соловьева

Сначала в космос отправился Валерий Быковский на корабле «Восток-5». Произошло это 14 июня 1963 г. Спустя два дня стартовал «Восток-6», в кабине которого находилась Терешкова. В космическом эфире зазвучали позывные советских космонавтов - «Ястреб» и «Чайка».

Полет первой космонавтки проходил тяжело. С заданием по ориентированию корабля она не справилась, и с большинством других экспериментов. Оставляло желать лучшего И самочувствие.

19 июня спускаемый аппарат «Востока-6» совершил посадку в Алтайском крае. Неподалеку от него на парашюте благополучно опустилась Терешкова.⁴

Итоги полета оказались весьма неутешительными. Как вспоминал впослед-ствии журналист Ярослав Голованов, Сергей Павлович Королев просто кипел от ярости: «Чтобы я еще когданибудь связался с женщинами! Никогда!». Другие очевидцы утверждают, что слова были иными, «не для печати». Но суть та же.

Как бы то ни было, женские полеты в космос в СССР прекратились надолго. Хотя, справедливости ради, надо сказать, что в середине 1960-х годов в рамках программы «Восход» рассматривался вопрос о запуске многоместного корабля с чисто женским экипажем. При этом предполагалось, что одна из участниц экспедиции совершит выход в открытый космос. Но не сложилось из семи намеченных полетов «Восходов» состоялось только два. Остальные, в том числе и «женский», остались нереализованными.

А в октябре 1969 г. первую женскую группу расформи-Дальнейшего ровали. смысла ee существовании уже никто не видел: политические амбиции удовлетворены, были а реальных задач перед женщинами тогдашняя космонавтика поставить не могла, да и не хотела - в те годы первое место занимал «военный космос», и основные свои усилия конструкторы сосредоточили на этом вопросе.

Второй набор

Второй женский набор в Советском Союзе состоялся только в конце 1970х годов. И вновь «по вине» американцев. Незадолго ДΟ этого в США произведен очередной набор в отряд астронавтов NASA, и впервые в нем приняли участие женщины. Причем вполне официально, а не так, как Джеральдина Кобб и ее подруги. К тому же - наравне с мужчинами. В результате в отряде оказались сразу восемь представительниц прекрасного пола.

В этих условиях тогдашний генеральный конструктор НПО «Энергия» Валентин Глушко смог «пробить» выдвинутую им несколькими годами ранее идею о возобновлении полетов женшин в космос. В результате состоявшегося набора (точнее, ряда формирование наборов. так как группы растянулось на три года) подготовке приступили Галина Васильевна Амелькина, Елена Ивановна Доброквашина, Тамара Захарова. Екатерина Сергеевна Александровна Иванова. Наталья Дмитриевна Кулешова, Ирина Лариса **Дмитриевна** Латышева. Григорьевна Пожарская. Рудольфовна Пронина и Светлана Евгеньевна Савицкая.

Как и из состава первого набора, из второго в космосе побывала только одна - Савицкая. Но зато дважды в 1982 и 1984 годах. К тому же она стала первой женщиной, совершившей выход в открытый космос.

У Глушко имелось много идей по участию «слабого пола» в космических полетах. Космонавток неоднократно назначали дублирующие резервные экипажи, были они и в основных экипажах. Но, по роковому стечению обстоятельств, ни один из запланированных полетов так и не состоялся.

Американки – на шаттлах, Кондакова – на «Мире»

Зато американки в те годы понастоящему «развернулись», словно наверстывая упущенное. Конечно, этому во многом способствовали корабли семейства Space Shuttle.5 Вместительные довольно комфортные, они без труда доставляли на орбиту всех, кого нужно было туда доставить, не обращая внимания на пол и возраст.

Первой представительницей США. побывавшей на орбите, стала Сэлли Райд в 1983 г. Поговаривали, что на роль первой американки-астронавта ее выбрали из-за фамилии - «ride» поанглийски значит «ехать».

⁴ Валентина Терешкова и приземлившийся тремя часами позже Валерий Быковский стали последними космонавтами, осуществившими посадку в катапультируемом кресле, отдельно от спускаемого аппарата

⁵ ВПВ №8, 2011, стр. 4

женщины, побывавшие в космосе

MANUFING HMG OTHECTRO	количество	FORA ROBETOR	OF HAG EDOGOGN/ATERI HOCTI
ФАМИЛИЯ, ИМЯ, ОТЧЕСТВО	ПОЛЕТОВ	ГОДА ПОЛЕТОВ	ОБЩАЯ ПРОДОЛЖИТЕЛЬНОСТЬ
СССР, РОССИЙСКАЯ ФЕДЕРАЦИЯ		4052	0 00 50 0
Терешкова Валентина Владимировна ¹	1	1963	2 дня 22 часов 50 минут 8 секунд
Савицкая Светлана Евгеньевна ²	2	1982, 1984	19 суток 17 часов 7 минут
Кондакова Елена Владимировна ³	2	1994, 1997	178 суток 10 часов 41 минут 31 секунд
СОЕДИНЕННЫЕ ШТАТЫ АМЕРИКИ	2	1002 1007	1/ OUTON 7 HOSER /7 HUNDET 22 CONTUR
Райд Салли Кристен (Ride Sally Kristen) ⁴		1983, 1984	14 суток 7 часов 47 минут 32 секунд
Фишер Энн Ли (Fisher Anna Lee)	1 1	1984 1984	7 суток 23 часа 44 минуты 56 секунд
Резник Джудит Арлин (Resnik Judith Arlene) ⁵	3	1984-1992	6 суток 56 минут 4 секунды
Салливэн Кэтрин Дуайер (Sullivan Kathryn Dwyer)	3 2		22 дня 4 часа 49 минут 7 секунд
Клив Мэри Луиза (Cleave Mary Louise)	3	1985, 1989	10 суток 22 часа 1 минута 16 секунд
Седдон Маргарет Рей (Seddon Margaret Rhea) Люсид Шеннон Матильда Уэллс		1985-1993	30 суток 2 часа 22 минуты 15 секунд
(Lucid Shannon Matilda Wells) ⁶	5	1985-1996	223 дня 2 часа 52 минуты 20 секунд
Данбар Бонни Джин (Dunbar Bonnie Jean)	5	1985-1998	50 суток 8 часов 24 минут 44 секунд
Бейкер Эллен Луиза Шулман (Baker Ellen Louise Shulman)	3	1989-1995	28 суток 14 часов 31 минут 41 секунд
Торнтон Кэтрин Райан Корделл (Thornton Kathrin Ryan Cordell)	4	1989-1995	40 суток 15 часов 14 минут 20 секунд
Айвинс Марша Сью (Ivins Marsha Sue)	5	1990-2001	55 суток 21 час 47 минут 46 секунд
Хьюз-Фулфорд Милли Элизабет (Hughes-Fulford Millie Elizabeth)	1	1991	9 суток 2 часа 14 минут 20 секунд
Джернигэн Тамара Элизабет (Jernigan Tamara Elizabeth)	5	1991-1999	63 дня 1 час 25 минут 38 секунд
Годвин Линда Мэксин (Godwin Linda Maxine)	4	1991-2001	38 суток 6 часов 13 минут 48 секунд
Джемисон Мэй Кэрол (Jemison Mae Carol)	1	1992	7 суток 22 часа 30 минут 24 секунды
Дэвис Нэнси Джен (Davis Nancy Jan)	3	1992-1997	28 суток 2 часа 6 минут 44 секунды
Восс Дженис Элейн (Voss Janice Elaine)	5	1993-2000	49 суток 3 часа 49 минут 12 секунд
Хелмс Сьюзен Джейн (Helms Susan Jane) ⁷	5	1993-2001	210 суток 23 часов 5 минут 43 секунд
Керри Нэнси Джейн (Currie Nancy Jane)	4	1993-2002	41 суток 15 часов 32 минут 49 секунд
Очоа Эллен Лори (Ochoa Ellen Lauri)	4	1993-2002	40 суток 20 часов 19 минут 3 секунды
Коулмэн Кэтрин Грейс (Coleman Catherine Grace)	3	1995-2011	180 суток 3 часа 59 минут 33 секунды
Вебер Мэри Эллен (Weber Mary Ellen)	2	1995, 2000	18 суток 18 часов 29 минут 12 секунд
Коллинз Эйлин Мэри (Collins Eileen Marie) ⁸	4	1995-2005	36 суток 8 часов 10 минут 10 секунд
Лоуренс Венди Бэрриен (Lawrence Wendy Barrien)	4	1995-2005	51 день 3 часа 55 минут 58 секунд
Стилл Сьюзен Ли (Still Susan Leigh)	2	оба в 1997 г.	19 суток 15 часов 57 минут 12 секунд
Чаула Калпана (Chawla Kalpana)9	2	1997, 2003	31 сутки 14 часов 54 минуты 27 секунд
Хайер Кэтрин Патрисиа (Hire Kathryn Patricia)	2	1998, 2010	29 суток 15 часов 56 минут 21 секунда
Каванди Дженет Линн (Kavandi Janet Lynn)	3	1998-2001	33 дня 20 часов 7 минут 46 секунд
Магнус Сандра Холл (Magnus Sandra Hall)10	3	2002-2011	157 суток 8 часов 43 минуты 19 секунд
Кларк Лорел Блейр Солтон (Clark Laurel Blair Salton)11	1	2003	15 суток 22 часа 20 минут 22 секунды
Ансари Анюше (Ansari Anousheh)12	1	2006	10 суток 21 час 4 минуты 37 секунд
Новак Лайза Мэри (Novak Lisa Marie)	1	2006	12 суток 18 часов 36 минут 48 секунд
Стефанишин-Пайпер Хайдемари Марта (Stefanyshyn-Piper Heidemarie Martha)	2	2006, 2008	27 суток 15 часов 36 минут 12 секунд
Хиггинботам Джоан Элизабет Миллер (Higginbotham Joan Elizabeth Miller)	1	2006	12 суток 20 часов 44 минут 25 секунд
Уилльямс Санита Лин (Williams Sunita Lyn) ¹³	2	2006-2012	321 день 17 часов 15 минут 30 секунд
Колдуэлл Трейси Эллен (Caldwell Tracy Ellen)	2	2007 и 2011-2012	188 суток 19 часов 14 минут
Морган Барбара Реддинг (Morgan Barbara Radding)14	1	2007	188 суток 19 часов 13 минут 47 секунд
Мелрой Памела Энн (Melroy Pamela Ann)	3	2000-2007	38 суток 20 часов 3 минуты 30 секунд
Уитсон Пегги Аннетт (Whitson Peggy Annette)15	2	2002, 2007	374 дня 17 часов 21 минута 28 секунд
Уилсон Стефани Дайана (Wilson Stephanie Diana)	3	2006-2010	42 дня 23 часа 46 минут 58 секунд
Найберг Карен Луджин (Nyberg Karen Lujean)16	1	2008	13 суток 18 часов 13 минут 8 секунд
Стотт Николь Пассоно (Stott Nicole Passonno)	2	2009, 2011	103 дня 5 часов 48 минут 39 секунд
Меткоф-Линденбюргер Дороти Мэри (Metcalf-Lindenburger Dorothy Marie)	1	2010	15 суток 2 часа 47 минут 10 секунд
Уокер Шэннон Бейкер (Walker Shannon Baker)	1	2010	162 дня 08 часов 10 минут 47 секунд

станции «Мир» ⁴ Первая американка, побывавшая в космосе ⁵ Второй раз стартовала в космос на борту шаттла Challenger 28 января 1986 г. Полет закончился взрывом корабля на 73-й секунде полета ⁶ Первой из американок работала на борту российской

перьая женщина, командовавшая Международной космич станцией. Мировой рекордсмен среди женщин по суммарной длительности пребывания в космосе

¹⁶ К моменту публикации статьи Найберг отправилась в свой второй космический полет.

ЖЕНЩИНЫ, ПОБЫВАВШИЕ В КОСМОСЕ (ПРОДОЛЖЕНИЕ)

ФАМИЛИЯ, ИМЯ, ОТЧЕСТВО	КОЛИЧЕСТВО ПОЛЕТОВ	годы полетов	общая продолжительность
КАНАДА			
Бондар Роберта Линн (Bondar Roberta Lynn)	1	1992	8 суток 1 час 14 минут 44 секунды
Пайетт Жюли (Payett Julie)	2	1999, 2009	25 суток 11 часов 57 минут 59 секунд
ВЕЛИКОБРИТАНИЯ			
Шарман Хелен Патрисиа (Sharman Helen Patricia)	1	1991	7 суток 21 час 13 минут 45 секунд
ФРАНЦИЯ			
Эньере Клоди (Haignere Claudie)	2	1996, 2001	25 суток 14 часов 23 минуты 28 секунд
я иноп я			
Мукаи Тиаки (Mukai Chiaki)	2	1994, 1998	23 дня 15 часов 38 минут 57 секунд
Ямазаки Наоко (Yamazaki Naoko)	1	2010	15 суток 2 часа 47 минут 10 секунд
южная корея			
Йи Сойон (Yi Soyeon)	1	2008	10 суток 21 часов 13 минут 5 секунд
КИТАЙ			
Лю Ян (Liu Yang)	1	2012	12 суток 15 часов 25 минут 24 сек.

С тех пор полеты женщин на шаттлах стали регулярными. Редкий экипаж не включал в свой состав представительниц прекрасной ловины человечества. Нередко на борту их находилось двое, а несколько раз - даже трое. Были среди них и специалисты, и пилоты, и даже командиры экипажей.

Будничность сообщений οб очередном полете американки подвигла руководителей советской космической программы на подготовку нового эпохального эксперимента длительного пребывания женщины на борту орбитальной станции. Правда, реализовать этот замысел удалось уже после распада СССР.

В 1994-1995 гг. в 5-месячной экспедиции станцию «Мир» на участвовала россиянка Кондакова. В мае 1997 г. она вновь отправилась в космос - на этот раз на

борту «космического челнока»,6 став первой женщиной в мире, летавшей как на российском, так и на американском корабле.

А в 2012 г. на орбите побывала первая китаянка. Таким образом, все три космические державы, обладающие технологией отправки людей в космос, предоставили такую возможность слабому полу. (Представительницы других стран и до того уже летали на советских, российских и американских кораблях — но только как «пассажирки».)

Кто был на орбите

С 1963 г. до начала 2013 г. в космосе побывали 56 женщин: трое - гражданки СССР и РФ, 45 - США, по две канадки и японки, по одной - из Великобритании, Франции, Южной Кореи и Китая.

Часто в числе летавших в космос упоминается американская школьная учительница Шэрон Криста Корригэн Маколифф (Sharon Christa Corrigan McAuliffe). 28 февраля 1986 г. она отправилась в полет на борту шаттла Challenger. Однако до космоса ей добраться не удалось - через 73 секунды после старта корабль взорвался. Отдавая дань уважения ее подвигу, все же в число астронавток ее обычно не включают.

В таблице приведен полный список женщин, которые пересекли границу атмосферы и космоса.

Планы на будушее

После завершения эксплуатации

⁶ Шаттл Atlantis, миссия STS-84 (15-24 мая 1997 г.) ⁷ BΠB №7, 2012, стр. 26

американских многоразовых пилотируемых кораблей Space Shuttle, женщины экипажи которых регулярно, полеты включались представительниц прекрасного пола в космос стали, увы, редким событием. Скорее всего, рекорды по продолжительности космической экспедиции (одиночной и суммарной) и длительности выхода в открытый установленные настоящему времени, «продержатся» еще долго.

В 2013 г. на околоземной орбите должна побывать только американка Карен Найберг в составе 36/37-й Международную экспедиции на космическую станцию. Возможно, в экипаж корабля «Шеньчжоу-10», старт которого запланирован на лето текущего года, будет включена гражданка КНР. Однако об этом мы узнаем, «по китайской традиции», непосредственно перед стартом.

Согласно планам на 2014 г., в состав экспедиции МКС 41/42 включена россиянка Елена Серова. а в состав экспедиции МКС 42/43 американка Сандра Кристофоретти (Sandra Christoforetti). Космические полеты других женщин пока не планируются.

Но можно не сомневаться в том, что женщины и дальше будут летать в космос, расширяя свое «присутствие» за пределами атмосферы так же активно, как и во всех «чисто земных» сферах деятельности. И в этом, собственно говоря, нет ничего плохого. Остается только пожелать им успехов и новых космических достижений!

Ансари Анюше

Первая женщина, совершившая орбитальный полет в качестве космического туриста.

Астронавтка, совершившая самый длительный единичный космический полет (195 суток 18 часов 2 минуты 3 секунды, экспедиция МКС 14/15).

Валентина Терешкова: жизнь после космоса

После первых успешных полетов космонавтов-мужчин у Сергея Королева появилась идея запустить в космос женщину. В начале 1962 г. начался поиск претенденток по следующим критериям: парашютистка, возрастом до 30 лет, ростом до 170 см и весом до 70 кг. Из сотен кандидатур были отобраны пятеро: Жанна Еркина, Татьяна Кузнецова, Валентина Пономарева, Ирина Соловьева и Валентина Терешкова. Сразу после зачисления в отряд космонавтов их призвали на срочную воинскую службу в звании рядовых. В декабре 1962 г. будущим космонавткам присвоили звание младшего лейтенанта.

Последние минуты перед стартом.

Старт «Востока-6».

Первый секретарь ЦК КПСС Никита Хрущев (справа), космонавты Валентина Терешкова, Павел Попович и Юрий Гагарин (слева) на трибуне мавзолея В.И.Ленина на Красной площади во время митинга, посвященного успешному завершению полета космических кораблей «Восток-5» (пилот Валерий Быковский) и «Восток-6» (пилот Валентина Терешкова). СССР, Москва, 1963 г.

Торжественная церемония бракосочетания летчиков-космонавтов Валентины Терешковой и Андрияна Николаева. Москва, 3 ноября 1963 г. В соответствии с обширной программой медико-биологических исследований, задуманной Сергеем Королевым и его соратниками, после космического полета Валентина Терешкова вышла замуж за космонавта Андрияна Николаева (после бракосочетания и вплоть до развода носила двойную фамилию Николаева-Терешкова). Свадьба состоялась в правительственном особняке на Ленинских горах, среди гостей был Никита Сергеевич Хрущев. Брак был официально расторгнут в 1982 г., после совершеннолетия дочери Елены — первого ребенка планеты, оба родителя которого побывали в космосе. О причинах развода с «космонавтом-3» Терешкова однажды обмолвилась: «В работе — золото, дома — деспот». Вторым мужем космонавтки стал генерал-майор медицинской службы, директор Центрального института травматологии и ортопедии Юлий Шапошников (1931-1999).

Майор Валентина Терешкова

Звание лейтенанта Терешкова получила в день старта, звание капитана – после успешного выхода корабля «Восток-6» на околоземную орбиту.

С января 1965 г. – майор, с октября 1967 г. – подполковник, с апреля 1970 г. – инженер-полковник, с 1995 г. – генералмайор (первая в истории Российской армии женщинагенерал). С 30 апреля 1997 г. в отставке.

После выполнения космического полета Валентина Терешкова окончила с отличием Военно-воздушную инженерную академию им. Жуковского, стала кандидатом технических наук, профессором, автором более 50 научных работ. 22 января 1969 г. находилась в автомобиле, обстрелянном офицером Виктором Ильиным в ходе покушения на Л.И.Брежнева. Не пострадала.

Валентина Терешкова до сих пор остается единственной женщиной, совершившей одиночный космический полет. Все последующие космонавтки и астронавтки летали в космос только в составе экипажей.

2 декабря 2010 г. в подмосковном Звездном городке состоялась встреча Валентины Терешковой (слева) с астронавткой NASA Кэтрин Коулмэн (Catherine 'Cady' Coleman) — бортинженером 26-й экспедиции на МКС, стартовавшей на корабле «Союз ТМА-20» двумя неделями позже. В состав экспедиции также вошел россиянин Дмитрий Кондратьев и представитель ESA Паоло Hecnoли (Paolo Nespoli).

торой коммерческий рейс частного грузового космического корабля Dragon начался 1 марта 2013 г. в 10 часов 10 минут по времени восточного побережья США (15:10 UTC). Двухступенчатая ракета-носитель Falcon 9 компании Space Exploration Technologies (SpaceX) стартовала с площадки SLC-40 Станции ВВС США «Мыс Канаверал», пуск был произведен стартовыми командами компании SpaceX при поддержке боевых расчетов 45-го Космического крыла ВВС США.

Миссия CRS-2 – четвертый непилотируемый полет аппарата Dragon в качестве транспортного корабля и второй операционный полет в рамках программы Commercial Resupply Services согласно контракту компании SpaceX и NASA. В общей сложности компания должна выполнить 12 таких полетов.

Примерно через 10 минут после старта корабль отделился от носителя и вышел на околоземную орбиту. Вскоре представители SpaceX сообщили, что у «грузовика» возникли какие-то проблемы - в частности, его солнечные батареи не раскрылись (без них корабль смог бы «продержаться» не более 13 часов). Позже выяснилось, что проблемы связаны с двигателями ориентации, а батареи не раскрыли намеренно, чтобы проще было устранить неисправность.

Корабль Dragon оснащен 18 двигателями Draco, которые объединены в четыре группы – две по 4 и две по 5. Каждый из двигателей имеет тягу 400 Н. Они используются для маневров на орбите и управления ориентацией. Оказалось, что три из четырех двигательных групп не запустились после выхода «грузовика»

на орбиту из-за автоматической блокировки. Согласно предварительным сообщениям, сбой был обусловлен проблемами с клапаном топливной системы. Для того, чтобы начать раскрытие солнечных батарей, необходимо, чтобы функционировали как минимум две группы. Эту задачу специалистам компании SpaceX удалось решить: заработали две из четырех двигательных групп, после чего были полностью раскрыты солнечные панели.

З марта частный грузовой космический корабль успешно состыковался с МКС. Операция была выполнена с помощью манипулятора Canadarm2. Астронавты NASA Кевин Форд и Том Маршберн (Kevin Ford, Thomas Marshburn) успешно захватили Dragon 17-метровым манипулятором и «подтянули» его к

модулю Harmony. Захват был произведен в 10:31 UTC, стыковка произошла в 13:56 UTC.

Dragon доставил на станцию 677 кг груза (575 кг без упаковки) - 81 кг продовольствия и посылок для экипажа, 135 кг оборудования для МКС и других предметов, а также 347 кг приборов и материалов, предназначенных для 43 научных экспериментов. В их числе - эксперимент по исследованию поведения в невесомости коллоидных растворов, заказанный компанией Procter and Gamble, биологические эксперименты по выращиванию кристаллов белков и по изучению влияния дефицита кислорода на лабораторные растения. Кроме того, на станцию прибыли приборы для 12 школьных научных проектов, среди которых, например, эксперимент по выращиванию латука в невесомости, разра-

30 Вселенная, пространство, время www.universemagazine.com

Один из серии снимков, сделанных 3 марта членами экспедиции МКС-34 с борта станции в процессе захвата и стыковки грузового корабля Dragon частной компании SpaceX. В составе орбитального комплекса корабль пробудет около трех недель.

ботанный девочками-скаутами с Гавайских островов.

Среди полезной нагрузки нашлось место и сюрпризам. «Если предыдущим рейсом корабль доставил на МКС мороженое, то теперь это посылка из фруктового сада отца одного из наших сотрудников», сказала представительница компании SpaceX Гвин Шотвелл (Gwynne Shotwell) на пресс-конференции в NASA, не уточнив, о каких фруктах идет речь. Для канадского астронавта Криса Хэдфилда (Christopher Hadfield) Dragon привез копченого лосося, медовые конфеты, мясные палочки (buffalo stix) и кленовый сироп.

Возвращение корабля на Землю (приводнение в Тихом океане) должно состояться 25 марта. Спускаемый аппарат будет нести 1370 кг груза. Первоначально этот полет КК Dragon был запланирован на

декабрь 2012 г., однако из-за ряда технических проблем его несколько раз откладывали.

В свой первый коммерческий рейс Dragon отправился 8 октября 2012 г., доставив на МКС 450 кг груза. После выполнения миссии он успешно приводнился в заданном районе Тихого океана.1 Ранее, в мае 2012 г., корабль совершил первый тестовый полет на станцию. Тогда на его борту не было критически важной полезной нагрузки.² В начале лета компания Orbital Sciences - главный конкурент SpaceX - планирует произвести первый демонстрационный полет своего корабля Cygnus («Лебедь»). Испытательный полет ракеты-носителя Antares, с помощью которой будет запускаться Cygnus, состоится уже в начале апреля.

Индийская ракета вывела на орбиту семь спутников

12:31 UTC 25 февраля 2013 г. из Космического центра имени Сатиша Дхавана специалистами Индийской организации космических исследований (Indian Space Research Organization) осуществлен пуск ракеты-носителя PSLV C-20.³ Эта ракета в качестве первой ступени использует один из самых больших твердотопливных двигателей в мире диаметром 2,8 м. Третья ступень ракеты также твердотопливная, вторая и четвертая оснащены жидкостными реактивными двигателями.

Основной полезной нагрузкой ракеты стал франко-индийский океанологический спутник SARAL (Satellite with ARgos and ALtiKa), предназначенный для измерения уровня океана с точностью до 8 мм (против 2,5 см в среднем для предыдущего поколения высотомеров) с пространственным разрешением 2 км.

Также на орбиту был выведен мини-спутник NEOSSat (Near Earth Object Surveillance Satellite) – первый космический телескоп, специально предназначенный для поиска потенциально опасных астероидов и фрагментов космического мусора. Масса спутника составляет 65 кг, его разработка и изготовление обошлись в 25 млн. долларов США. Основным его инструментом является менисковый телескоп системы Максутова с апертурой 15 см. Он сможет регистрировать объекты, имеющие блеск до 20-й звездной величины. У аппарата отсутствует двигательная установка. Его энергоснабжение осуществляется с помощью солнечных батарей. Общая потребляемая мощность не превышает 80 Вт.

В ходе запуска индийской ракеты на околоземные орбиты были выведены еще 5 космических аппаратов:

Sapphire - первый канадский военный спутник;

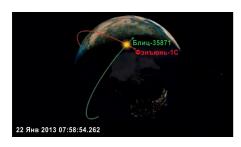
UniBRITE - канадский наноспутник;

TUGsat 1 - первый австрийский наноспутник;

STRaND 1 – малый британский спутник, в котором роль бортового компьютера играет смартфон;

AAUSAT3 – спутник стандарта CubeSat, созданный студентами из Лании

Общая масса полезной нагрузки составила 668,5 кг.


 3 PSLV (Polar Satellite Launch Vehicle) – носитель для запуска спутников на полярные орбиты

¹ BΠB №10, 2012, cтp. 29

² BΠB №6, 2012, cтp. 4

Российский спутник столкнулся с фрагментом космического мусора

По оценке эксперта американского Центра космических стандартов и инноваций Томаса Келсо (Thomas Kelso), обломок китайского аппарата, «атаковавший» спутник BLITS, вряд ли весил больше 80 мг. Однако пока не совсем ясно, насколько серьезные повреждения получил российский спутник.

оссийский микроспутник «Блиц» (№35871/2009-049G), предназначенный для работы с международной системой лазерного зондирования, столкнулся с обломком китайского метеоспутника «Фэнъюнь-1С». Это второй в истории зарегистрированный случай столкновения искусственных объектов на орбите - после столкновения спутников «Космос-2251» и Iridium 33 в 2009 г.¹

Специалисты Международной службы лазерной дальнометрии ILRS обнаружили резкое изменение параметров орбиты

¹ВПВ №2, 2009, стр. 35

спутника «Блиц» (BLITS - Ball Lens In The Space), созданного в Научно-производственной корпорации «Системы прецизионного приборостроения» и запущенного в 2009 г. Спутник представляет собой стеклянный шар-отражатель массой 7,5 кг, «возвращающий» световые импульсы с наземных лазерных дальномеров.

Анализ параметров космического аппарата показал, что 22 января около 7:57 UTC период его вращения вокруг оси резко изменился - с 5,6 секунд до 2,1 секунды. Кроме того, большая полуось его орбиты уменьшилась на 120 м. По оценкам специалистов, обломок, с которым произошло столкновение, весил не более 0,08 г, однако пока неизвестно, насколько серьезные повреждения он нанес российскому аппарату - это можно установить только в ходе дополнительных наблюдений. Далее будет принято решение о целесообразности дальнейшего использования спутника.

Сотрудники Центра проверили базы данных космического мусора и установили, что за 10 секунд до изменения орбиты рядом с «Блицем» должен был пролететь один из фрагментов китайского спутника «Фэнъюнь-1С», который в 2007 г. был разрушен на множество обломков в ходе испытания Китаем противоспутникового оружия.

Памятник Гагарину открыт в Гринвиче

амятник Юрию Алексеевичу Гагарину, открытый полтора года назад напротив здания Британского совета в Лондоне, перенесен на территорию Королевской обсерватории в Гринвиче (сейчас это один из районов британской столицы) и теперь будет стоять на террасе, названной в честь первого космонавта. Монумент стал подарком Великобритании от Российского космического агентства к 50-летию визита Гагарина на Британские острова, которое отмечалось в июле 2011 г.

Дочь первого космонавта планеты, директор Музеев Кремля Елена Гагарина 7 марта 2013 г. выступила на открытии памятника ее отцу в Гринвиче и выразила надежду, что монумент, переехавший на новое постоянное место из центра Лондона, станет источником вдохновения для молодого поколения и заслуживающей внимания достопримечательностью для всех посетителей Гринвичской обсерватории.

Памятник Юрию Гагарину на территории Королевской обсерватории в Гринвиче.

еждународная космическая станция вечером 19 февраля потеряла связь с американским центром управления из-за неисправности системы ретрансляции данных. Радиоконтакт с наземными станциями слежения на территории США пропал

приблизительно в 14:45 UTC (18 часов 45 минут по московскому времени). Центр управления полетом в Хьюстоне сумел установить временную связь с экипажем и передать ему соответствующие инструкции, когда МКС около 21 часа по московскому времени пролетала

над российскими приемными станциями.

Непредвиденная потеря связи, как выяснилось позже. была вызвана сбоем во время установки нового программного обеспечения, необходимого для стыковки со станцией грузового корабля Dragon. Как

только проблема была устранена, специалисты продолжили установку новых программ, используемых, в частности, для управления манипулятором Canadarm2, который впоследствии захватил грузовой корабль и подвел его к стыковочному порту.

Корпорация Дэнцу (Dentsu Inc.) огласила имена двух гуманоидных коммуникационных роботов, разрабатываемых в рамках проекта KIBO ROBOT PROJECT – «Киробо» и «Мирата». Проект осуществляется совместно с Исследовательским центром передовой науки, Университетом Токио, а также корпорациями ROBO GARAGE и Toyota Motor.

Япония отправит в космос первого андроида

етом нынешнего года Япония планирует отправить на МКС робота «Киробо» (Kirobo) – первого автономного андроида, которого японское агентство аэрокосмических исследований JAXA собирается «поселить» в экспериментальном модуле «Кибо». Весит

² BПВ №4, 2008, стр. 6; №6, 2008, стр. 14

он всего один килограмм и имеет габариты 34×18×15 см.

Киробо «умеет» распознавать и синтезировать голос, обрабатывать естественную речь. Он обладает телекоммуникационными функциями, узнает людей и ведет постоянную видеозапись. Андроид создан в рамках участия Японии в программе работ на МКС. Основной его целью будет развлечение экипажа станции.

Китай строит четвертый космодром

етвертый китайский космодром, строящийся на тропическом острове Хайнань, будет сдан в эксплуатацию в течение ближайших двух лет, сообщил делегат сессии Всекитайского комитета Народного политического консультативного совета Китая, главный конструктор китайской программы пилотируемых космических полетов Чжоу Цзяньпин. По его словам, новый космодром, сооружение которого ведется с 2009 г., будет использован для запусков модулей космиче-

ских станций и грузовых космических кораблей с помощью ракет-носителей нового поколения «Чаньчжэн-7» и «Чаньчжэн-5».

Космодром станет самой низкоширотной пусковой площадкой КНР. Он расположен недалеко от города Вэньчан на северо-восточном берегу островной провинции Хайнань. С него также планируют запускать геостационарные спутники и межпланетные станции. Ежегодно с этой площадки должно осуществляться 10-12 ракетных пусков.

Сооружение стартового комплекса для ракет-носителей «Чаньчжэн-5» («Великий Поход 5») на острове Хайнань движется согласно плану, предусматривающему первый старт с нового космодрома в 2014 г.

Вторая китаянка готовится к полету

о сообщению одного из китайских экспертов в области космонавтики, экипаж нового пилотируемого корабля «Шэньчжоу-10», запуск которого запланирован на июнь-август этого года, будет состоять из трех тайконавтов, в том числе одной женщины. Об этом проинформировал журналистов агентства Синьхуа

главный конструктор программы пилотируемой космонавтики Китая Чжоу Цзяньпин. Согласно его сообщению, «Шэньчжоу-10» должен совершить стыковку с орбитальным лабораторным модулем «Тяньгун-1».

Тайконавты проведут в космосе 15 дней, на протяжении 12 из них они будут работать на борту орбитального комплекса, состоящего из корабля и лабораторного модуля.

Китайская программа пилотируемых полетов реализуется в три этапа. Первый этап, к настоящему времени успешно завершенный, включал в себя запуск и возвращение на Землю четырех беспилотных и двух пилотируемых космических кораблей серии «Шэньчжоу». Сейчас осуществляется второй этап, предусматривающий выход тайконавтов в открытый космос³ и проведение стыковки космических аппаратов на орбите, ⁴ что позволит отработать технологии, необходимые для реализации третьего этапа – создания долговременной пилотируемой орбитальной станции.

³ BПВ №10, 2008, стр. 36

⁴ BΠB №11, 2011, стр. 24; №7, 2012, стр. 26

Подведены итоги космической деятельности Украины в 2012 г.

Киеве 1 марта 2013 г. на Государственном предприятии ПО «Киевприбор» под председательством руководителя Государственного космического агентства Украины (ГКАУ) Юрия Сергеевича Алексеева, с участием заместителя директора Департамента - начальника Управления реального сектора экономики Секретариата Кабинета Министров Николая Щербины, а также руководителей ведущих предприятий и учреждений отрасли состоялось расширенное заседание Коллегии ГКАУ, на котором были рассмотрены итоги работы космической отрасли в 2012 г. и задачи на 2013 г.

В своем докладе руководитель ГКАУ отметил, что основные усилия отрасли в минувшем году были направлены на сохранение позитивных тенденций развития космической деятельности, в том числе, на рост объемов производства и реализации продукции. расширение присутствия и укрепление позиций отечественных предприятий-экспортеров ракетно-космической техники, технологий и услуг на мировом рынке.

По итогам работы в 2012 г. предприятиями отрасли произведено и реализовано продукции на сумму почти 4,3 млрд. грн. (по сравнению с 2011 г. объемы производства выросли на 20%, объемы реализации - на 19%). Экспортировано продукции на 2,5 млрд. грн., что на 5% больше, чем в 2011 г. Доля экспорта в общем объеме реализации достигла 62%. Почти три четверти экспортированной продукции составляет ракетно-космическая техника.

Приоритетными направлениями использования бюджетных средств в 2012 г. стало финансирование выполнения задач Общегосударственной целевой научно-технической космической программы, фактическое финансирование - 112 млн. грн. (100,0% от запланированных объемов расходов, на 53% выше показателей 2011 г.).

В 2012 г. изготовлено шесть ракет-носителей класса «Зенит». Осуществлено три пуска РН «Зенит-3SL» с плавучей платформы Odyssey в Тихом океане по программе «Морской старт», на геостационарные орбиты выведены космические аппараты Intelsat-19, Intelsat-21 и Eutelsat-W5A.

В рамках проекта «Циклон-4» продолжались работы по изготовлению систем, узлов, агрегатов ракеты-носителя «Циклон-4», выполнена их экспериментальная отработка. В Бразилию отправлена первая партия технологического оборудования наземного комплекса. На космодроме Алкантара продолжается строительство главных сооружений стартовой и технической позиций.

Госпредприятием КБ «Южное» завершен выпуск конструкторской и эксплуатационной документации первой ступени РН Antares. Первый демонстрационный пуск РН запланирован на апрель 2013 г.

Ведутся работы по созданию национальной системы спутниковой связи «Либідь». В частности, в течение 2012 г. завершена разработка технического проекта системы в целом и ее наземного сегмента, начато изготовление ракеты-носителя и космического аппарата.

По программе сотрудничества с Европейским космическим агентством изготовлены и отправлены на космодром Куру во Французской Гвиане два маршевых двигателя четвертой ступени европейской ракеты-носителя Vega.1 Первый успешный пуск этой ракеты состоялся 13 февраля 2012 г.²

Изготовлены и поставлены в Российскую Федерацию приборы и комплектующие для обеспечения пусков ракет-носителей «Союз» и «Протон».

¹ BΠB №9, 2012, cтp. 27

² BΠB №2, 2012, cтp. 32

Президиум Коллегии ГКАУ. Слева направо: Председатель ГКАУ Юрий Алексеев; первый заместитель председателя ГКАУ Сергей Баулин; заместитель директора Департамента – начальник Управления реального сектора экономики Секретариата Кабинета Министров Украины Николай Щербина

площадью около 2,3 млн. кв. км. На их основе специалистами ГКАУ выполнены значительные объемы работ по мониторингу чрезвычайных ситуаций, вырубок лесных массивов, отслеживанию всхожести озимых культур, экомониторингу и др.

Продолжены работы по утилизации твердого ракетного топлива со снятых с боевого дежурства межконтинентальных ракет РС-22, подлежащих ликвидации согласно Договору СНВ-2 1991 года. Обеспечено безопасное хранение 102 снаряженных корпусов двигателей, содержащих 4 тыс. тонн топлива. В настоящее время завершено изъятие топлива из всех двигателей третьих ступеней, начато его изъятие из двигателей вторых ступеней, имеющих критические отклонения от требований конструкторской документации. Всего изъято топливо из 61 снаряженного корпуса двигателей (весом 825 тонн). Проведена комплексная государственная экспертиза объекта утилизации пустых корпусов, выполнены строительные работы, осуществляется монтаж технологического оборудования.

Также велись работы по получению международной технической помощи для утилизации противопехотных мин ПФМ-1 (1C) на созданных в предыдущие годы промышленных мощностях Павлоградского химического завода.

Международная деятельность ГКАУ была направлена на дальнейшее развитие сотрудничества в космической сфере со странами СНГ, Европейского Союза, Северной и Южной Америки, Азиатско-Тихоокеанского региона, Ближнего Востока и Африки, а также на обеспечение выполнения международных обязательств Украины в сфере исследования и использования космического пространства в мирных целях по международным договорам.

Снимок украинской столицы, сделанный спутником «Січ-2»

Начата опытная эксплуатация Системы координатно-навигационного обеспечения Украины в составе 15 контрольно-корректирующих станций и Центра контроля навигационного поля, осуществляется ее подготовка к проведению Государственных испытаний.

В ходе выполнения Программы функционирования и развития Национальной системы сейсмических наблюдений и повышения безопасности проживания населения в сейсмоопасных регионах осуществлялся контроль за соблюдением требований международных договоров по ограничению и запрещению испытаний ядерного оружия, сейсмической обстановкой и другими геофизическими явлениями на территории Украины и по всему земному шару. В частности, в 2012 г. зарегистрировано и обработано 46443 сейсмических сигнала.

В рамках российско-украинского проекта «Радиоастрон» с использованием радиотелескопа РТ-70 обеспечено 167 сеансов приема информации общей длительностью 180 часов. Полученные данные переданы для обработки в Российскую Академию Наук и Национальную Академию Наук Украины.

Выполнены завершающие этапы реализации космического эксперимента «Обстановка» на российском сегменте МКС, для чего на борт станции доставлены специально разработанные научные приборы.³

В течение года было реализовано 1144 плановых и 364 экстренных заявки на съемку земной поверхности космическим аппаратом «Січ-2», получено более 1500 снимков территории общей площадью около 10 млн. кв. км, из них по территории Украины – порядка 300 снимков

Основные задачи на 2013 год:

- выполнение Плана мероприятий по развитию космической деятельности и производству космической техники на 2013 г.;
- утверждение Верховной Радой Украины Общегосударственной целевой научно-технической космической программы на 2013-2017 гг.;
- изготовление и запуск в декабре 2013 г. телекоммуникационного спутника «Либідь»;
- продолжение реализации международного проекта создания космического ракетного комплекса «Циклон-4» в пусковом центре Алкантара (Бразилия);
- продолжение работ по программам «Наземный старт», «Морской старт», Antares, Vega;
- обеспечение выполнения обязательств
 Украины по реализации международного космического эксперимента «Радиоастрон»;
- выполнение мероприятий по подготовке производства и созданию специальных технологий для изготовления многофункционального ракетного комплекса по теме «Сапсан»:
- завершение строительства промышленных объектов и начало серийной утилизации твердого ракетного топлива МБР РС-22;
- продолжение реализации мероприятий по реформированию отрасли:
- дальнейшее развитие сотрудничества со странами СНГ, Евросоюза, Америки, Ближнего Востока и Африки, Азиатско-Тихоокеанского региона, их космическими агентствами и соответствующими структурами;
- участие в Авиационно-космическом салоне Ле Бурже 2013 и Авиационно-космическом салоне МАКС-2013.

Источник: «На расширенном заседании Коллегии ГКАУ рассмотрены итоги работы космической отрасли в 2012 году и задачи на 2013 год» – Официальный веб-сайт Государственного космического агентства Украины.

³ ВПВ №2-3, 2013, стр. 30

⁴ BΠB №8, 2011, cтр. 15

0 заседании коллегии Федерального космического агентства России

о сообщению пресс-секретаря руководителя «Роскосмоса», 1 марта состоялось заседание коллегии Федерального космического агентства России (ФКА) под руководством его директора Владимира Александровича Поповкина. На заседании были рассмотрены итоги развития космической деятельности в 2012 г., а также задачи ФКА и организаций ракетно-космической отрасли по обеспечению космической деятельности в 2013 г. В заседании приняли участие руководители предприятий ракетно-космической отрасли, представители Российской Академии Наук, Военно-промышленной комиссии, Совета Безопасности, Главного контрольного управления Президента России, Счетной палаты, министерств и ведомств.

В своем выступлении Владимир Поповкин отметил, что в 2012 г. достигнута главная цель - выполнение задач, предусмотренных федеральными целевыми программами, государственным заказчиком или

заказчиком-координатором которых является Федеральное космическое агентство.

В минувшем году основными приоритетами космической политики стали:

- обеспечение гарантированного доступа России в космос, развитие и использование космической техники, технологий и услуг в интересах обороны и безопасности страны, социально-экономической сферы, а также развитие ракетно-космической промышленности и выполнение международных обязательств;
- создание космической техники для потребностей науки;
- организация пилотируемых полетов, а также создание научно-технического задела для осуществления в рамках международной кооперации пилотируемых полетов к другим телам Солнечной системы.

В 2012 г. Российская Федерация обеспечила проведение 24 пусков ракет-носителей и, как и все последние годы, осталась мировым лидером по этому показателю (более 38% от

общего числа пусков ракет-носителей).1 Запущено 33 космических аппарата (КА), в том числе с участием России в интересах зарубежных стран были успешно осуществлены 2 пуска с космодрома в Куру (выведено на орбиту 2 КА) и 3 пуска с плавучей платформы Odyssey (выведены на орбиты 3 КА).

¹ BΠB №1, 2013, cтр. 10

С целью удовлетворения государственных нужд успешно выведено на рабочие орбиты 18 КА. По состоянию на начало 2013 г. российская орбитальная группировка научного и социально-экономического назначения включает 75 КА, в том числе 29 навигационных, 26 спутников связи и вещания, 2 аппарата дистанционного зондирования Земли,

На космодроме в Амурской области закладывают фундаменты стартового и технического комплексов. Космодром Восточный строят почти 3000 человек. На стройплощадках они работают в круглосуточном режиме.

2 КА гидрометеорологического назначения, 2 КА научного назначения, 5 экспериментальных КА, 5 модулей МКС, а также по 2 пилотируемых и грузовых космических корабля.

В 2012 г. ФКА реализовывало 9 федеральных целевых программ (ФЦП) и две программы Союзного государства. Распоряжением Правительства РФ от 28 декабря 2012 г. № 2594-р утверждена государственная программа «Космическая деятельность России».

Разработан и представлен в Правительство проект Основ политики Российской Федерации в области космической деятельности на период до 2030 года и дальнейшую перспективу. Документ прошел все согласования и общественные слушания, после чего поступил в Аппарат Правительства РФ, откуда будет передан в Администрацию Президента России для утверждения.

Российской Федерацией в полном объеме выполнены международные обязательства по транспортно-техническому обеспечению МКС. В соответствии с программой полета осуществлены запуски 4 пилотируемых транспортных кораблей серии «Союз-ТМА-М» и 4 транспортных грузовых кораблей серии «Прогресс М-М».

В 2012 г. осуществлен запуск КА «Канопус-В» для наблюдения районов Земли с чрезвычайными ситуациями, который в настоящее время успешно функционирует. Увеличены орбитальные группировки многофункциональной спутниковой системы персональной связи (2 КА), системы ретрансляции «Луч» (1 КА) и космической системы связи (1 КА). В штатном составе (24 КА) работает группировка ГЛОНАСС, при этом еще 4 КА находятся в орбитальном резерве и один проходит летные испытания. Обеспечена точность позиционирования не менее 2,8 м.

В 2012 г. на космодроме «Восточный» развернуты полномасштабные работы по сооружению обеспечивающей

инфраструктуры и технологических объектов, выполнен нулевой цикл по стартовому и техническому сегментам. Создана Дирекция по космодрому «Восточный», задачами которой являются приемка строительных работ и недопущение перерасхода денежных средств.

В ушедшем году сдана в опытную эксплуатацию автоматизированная система предупреждения об опасных ситуациях в околоземном космическом пространстве (АСПОС ОКП).

Международное сотрудничество в 2012 г. развивалось по целому ряду направлений: запуски космических аппаратов, создание спутников и средств выведения, фундаментальные космические исследования, пилотируемые полеты (участие в программе МКС), использование системы ГЛОНАСС по соглашениям с другими странами.

Между тем Владимир Поповкин отметил, что решение отраслевых проблем в значительной степени связано с разрешением кадровой ситуации. Несмотря на стабильность состава, в ракетно-космической отрасли наблюдается острая нехватка высококвалифицированных кадров. Федеральное космическое агентство продолжит работу по совершенствованию уровня профессиональной подготовки. Только при условии решения кадровой проблемы можно говорить о реализуемости масштабных задач по укреплению и развитию космического потенциала.

Заслушав и обсудив доклады и выступления, Коллегия приняла решение в качестве главной цели на 2013 г. установить безусловное выполнение государственной программы «Космическая деятельность России на 2013-2020 годы».

К числу приоритетных направлений деятельности Федерального космического агентства в 2013 г. отнесены следующие:

- выполнение Плана запусков КА на 2013 г. в рамках Федеральной космической программы на 2006-2015 гг., Федеральной целевой программы «Поддержание, развитие и использование системы ГЛОНАСС на 2012-2020 годы», программ международного сотрудничества и коммерческих проектов:
- обеспечение эффективного функционирования средств выведения и орбитальных группировок;
- безусловное выполнение заданий Государственной

- программы вооружения на 2011-2020 гг., государственного оборонного заказа на 2013 г. и на плановый период 2014 и 2015 годов;
- повышение устойчивости функционирования космической системы ГЛОНАСС, наращивание ее функциональных возможностей и расширение сфер применения;
- повышение эффективности использования результатов космической деятельности в интересах конечных пользователей:
- реализация дополнительных мер по повышению надежности ракетно-космической техники, совершенствованию организации ее подготовки и контроля готовности к применению;
- реализация практических мероприятий, обеспечивающих расширение и закрепление присутствия России на мировом рынке космических услуг и продукции;
- повышение эффективности работы Агентства по организации разработки, производства и применения ракетно-космической техники.

Источник: «О заседании коллегии Федерального космического агентства». – Официальный веб-сайт Федерального космического агентства «Роскосмос». ■

У Земли обнаружен третий радиационный пояс

мериканские спутники Van Allen Probes (ранее известные как RBSP - Radiation Belt Storm Probes), запущенные 30 августа 2012 г.,¹ обнаружили ранее неизвестный, третий по счету радиационный пояс вокруг Земли. Датчики на борту космических аппаратов позволили достаточно быстро установить наличие еще одной - переходной - тороидальной области повышенной концентрации заряженных частиц. Ученые наблюдали за этой областью в течение четырех недель, пока новый пояс не разрушила ударная волна солнечного ветра.

Каждый из двух зондов несет одинаковый набор из пяти инструментов, которые позволяют специалистам получать беспрецедентный по количеству и качеству объем информации об околоземном пространстве.

Проект Van Allen Probes осуществляется в рамках программы NASA «Жизнь со звездой» (Living with the Star). Его общая стоимость равна 686 млн. долларов. Расчетный срок работы аппаратов составляет два года.

В первые дни после запуска информация, передаваемая приборами зондов, указывала на существование двух радиационных поясов. Однако в начале сентября ситуация изменилась: датчики начали регистрировать появление третьей области, похожей по форме на толстое кольцо. Исследователи перепроверили данные, сравнив полученную информацию с показаниями спутника SAMPEX, изучающего магнитосферу Земли с 1992 г. Несмотря

на невысокую чувствительность инструментов последнего, его «показания» подтвердили данные зондов Van Allen Probes. Убедившись в существовании третьего пояса, ученые продолжили наблюдения до его исчезновения в первые дни октября в результате столкновения «кольца» и внешнего пояса Ван Аллена с ударной волной, сформированной в солнечном ветре.

Судя по всему, дополнительный пояс возник в период высокой солнечной активности в области зазора между внутренним и внешним радиационными поясами, известными как пояса Ван Алена (в честь этого ученого названы также и спутники). Считается, что он мог появиться в результате коронального выброса массы 31 августа 2012 г. с дальнейшим формированием межпланетной ударной волны. В целом выявленный радиационный пояс представлял собой неустойчивое образование, разрушенное менее чем через месяц подобной же ударной волной.

Случаи образования новых радиационных поясов наблюдались и раньше: например, неустойчивый пояс между двумя уже известными (внешним и внутренним), возникший в результате корональных выбросов массы и высокоскоростных потоков солнечного ветра, был зарегистрирован спутниками CRESS и SAMPEX в марте 1991 г., феврале 1994 г., октябре 2003 г., июле и ноябре 2004 г., январе 2005 г.

В радиационных поясах накапливаются электроны, протоны и ядра легких атомов, попавшие в магнитосферу нашей планеты. Земля имеет два радиационных пояса: внутренний, состоящий из

протонов, расположен на высоте от 1600 до 13 тыс. км, внешний - на высоте от 19 тыс. до 40 тыс. км (в нем преобладают электроны). В этот внешний пояс оказался «встроен» еще один, лежащий в диапазоне высот от 19 тыс. до 22,3 тыс. км. Он сформировался 2 сентября 2012 г. и просуществовал около месяца. Впрочем, вполне возможно, что этот пояс следует считать не третьим, а четвертым: согласно результатам исследований, проведенных украинскими учеными с помощью спутникового телескопа электронов и протонов СТЭП-Ф (этот прибор был создан в Харьковском национальном университете имени В.Н.Каразина и работал на борту российского космического аппарата «Коронас-Фотон»),2 наша планета имеет еще один «постоянный» электронный пояс на сравнительно небольших высотах, под внутренним поясом Ван Аллена. Эти результаты были обнародованы в ходе выступлений на научных семинарах в Польше, Финляндии и США, а также подробно описаны в расширенном научном докладе на заседании Совета по космическим исследованиям Национальной Академии Наук Украины 27 июня 2012 г. Несмотря на то, что 2009 год отличался низкой солнечной активностью, три отчетливо разрешаемых радиационных пояса наблюдались на протяжении всего периода функционирования спутника «Коронас-Фотон» даже в моменты очень слабой возмущенности магнитного поля Земли.

В настоящее время исследования радиационных поясов имеют важнейшее значение для нашего высокотехнологичного общества. Сотни космических аппаратов - от метеоспутников и спутников связи до компонентов систем GPS и ГЛОНАСС - регулярно пересекают эти пояса, подвергаясь воздействию высокоэнергетических частиц, которые могут повредить солнечные панели или вызвать короткое замыкание в блоках электроники. Во время геомагнитных бурь (чаще всего они случаются в годы активного Солнца),3 когда пояса «разбухают» от избытка частиц, «поставляемых» солнечным ветром, целые спутниковые группировки могут подвергаться опасности, нарушая нормальное функционирование телекоммуникационных и навигационных систем. Зонды Van Allen Probes позволяют смягчить последствия таких нарушений.

Источники: сайты NASA, ГКАУ

¹ ВПВ №9, 2012, стр. 14; №11, 2012, стр. 32

Американские спутники Van Allen Probes (иллюстрация).

² BΠB №2, 2009, стр. 34; №1, 2010, стр. 10

³ ВПВ №3, 2012, стр. 4

НЕБЕСНЫЕ СОБЫТИЯ МАЯ

«ПРИВЕТ» ОТ КОМЕТЫ.

В начале мая Земля проходит сквозь достаточно плотную часть метеорного роя η-Акварид - шлейфа пылевых частиц, оставшихся после многочисленных пролетов знаменитой кометы Галлея (1P/Halley). В средних широтах Северного полушария можно наблюдать лишь небольшую часть метеоров, относящихся к этому рою, поскольку радиант потока, расположенный в созвездии Водолея, восходит незадолго до начала утренних сумерек. В приэкваториальных областях и в Южном полушарии «майские Аквариды» - один из наиболее мощных регулярно действующих потоков.1

ДВЕ ЯРКИХ МИРИДЫ.

На май текущего года приходятся максимумы блеска двух долгопериодических переменных звезд, которые могут достигать яркости около 4-й величины и легко наблюдаться невооруженным глазом - х Лебедя и R Гидры.

¹ BΠB №4, 2005, cтр. 42

Условия их видимости (особенно последней) будут близки к оптимальным.

СОЛНЕЧНОЕ «КОЛЬЦО».

В ходе затмения 9-10 мая видимый размер Луны окажется меньше размера Солнца, то есть конус лунной тени не достигнет земной поверхности, и во время центральной фазы светило приобретет вид сверкающего кольца.² Таким оно будет наблюдаться в полосе. проходящей от северо-западной части Австралии к основанию полуострова Кейп-Йорк. «цепляющей» восточную оконечность острова Новая Гвинея и пересекающей экватор недалеко от Науру. В районе архипелага Гилберта продолжительность кольцеобразной фазы превысит 6 минут. Частные фазы затмения видны на всей территории Австралии, в Новой Зеландии, на Тасмании, на островах Океании и Зондского архипелага, в южной части Филиппин и на Гавайях.

личину. Им станет двухсоткилометровая Геба (6 Hebe). Ее верхняя кульминация вблизи местной полуночи ожидается 23 мая. Астероид будет находиться на удаленном от Солнца участке своей орбиты, двигаясь по западной части созвездия Змеи недалеко от небесного экватора.

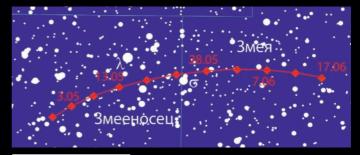
АСТЕРОИДНАЯ ОППОЗИЦИЯ.

ний месяц, май «отмечен»

противостоянием только од-

ного объекта главного пояса

астероидов, блеск которого


превысит 10-ю звездную ве-

Как и предыдущий весен-

СОЕДИНЕНИЕ ТРЕХ ПЛАНЕТ.

В 20-х числах мая на вечернем небе невысоко над

горизонтом можно будет наблюдать сравнительно тесное сближение трех ярких планет - Меркурия, Венеры и Юпитера. Они расположатся в 15-17° к востоку от Солнца, поэтому в наших широтах увидеть это необычное явление довольно сложно. Из остальных планет наилучшие условия видимости сложатся для Сатурна (двигаясь попятным движением, он «вернется» из созвездия Весов в созвездие Девы); на утреннем небе будет доступен наблюдениям Нептун и постепенно начнет выходить из сумеречного сегмента Уран. Марс по-прежнему «прячется» в лучах нашего светила.

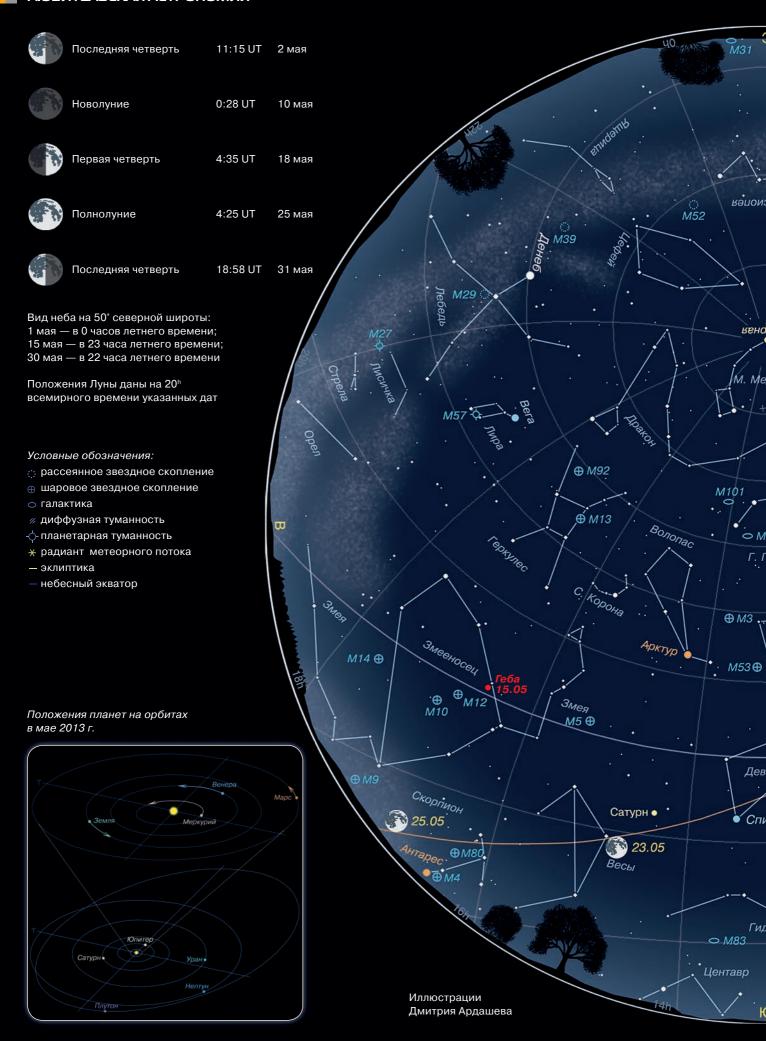
Видимый путь астероида Геба (6 Hebe) в мае-июне 2013 г.

² BΠB №6, 2012, cτp. 32

КАЛЕНДАРЬ АСТРОНОМИЧЕСКИХ СОБЫТИЙ (МАЙ 2013 Г.)

- 19-20 $^{\rm h}$ Луна (Ф = 0,57) закрывает звезду β Козерога (3,0 $^{\rm m}$). Явлениє видно на юго-востоке Центральн
- 11:15 Луна в фазе последней четверти 23:15-23:17 Астероид Фанинка (4554 Fanynka, 16,5^m) закрывает звезду НІР 94127 (7,9^m). Зона видимости: восток Краснодарского края, Ростовская, Воронежская, Липецкая обл., запад Рязанской обл., восточная часть Московской и Тверской обл.
- 2^h Луна (Ф = 0,32) в 5° се Нептуна (7,9^m)
- 17-18^h Луна (Ф = 0,17) закрывает звезду λ Рыб (4,5^m). Явление видно в Приморском крае Максимум активности метеорного потока η -Аквариды (около 20 метеоров в час; радиант: **26**^m, $\delta = 0^{\circ}$)
- 21^h Луна (Ф = 0,09) в 3° северн<u>ее</u> Б Урана (**5,9**^m)
- 9 4:15-14:20 Астероид Тукия 038 Tuckia, 18") закрывает звезду IIP 49970 (8,8"). Зона видимости: Максимум блеска долгопериодической переменной звезды **х** Лебедя (3,5^m)
- Новолуние. Колі чное затмение

- 23^h Луна (Ф = 0,01) в 2° южнее Венеры (-3,9^m)
- эсперы (-5,3°) 14-16° Луна (Ф = 0,02) закрывает звезду ε Тельца (3,5°°) для наблюдателей Западного Казахо и юга Центрад чай Суб и юга Центральной Сибири 18^h Луна (Ф = 0,03) в 3° севернее **А**льдебарана (α **Т**ельца, **0,8** m) Алодсоврена 20^h Меркурий в верхнем со за <u>ли</u>ском Солнца
- 12^h Луна (Ф = 0,06) в 3° южнее
- Юпитера (-1,9^m) 14^h Луна (Ф = 0,11) в апогее (в 405825 км от центра Земли) 13
- Максимум блеска долгопериодической переменной R Гидры (3,5^m)
- 4:35 Луна в фазе первой четверти 8° Луна (Ф = 0,53) в 6° южнее Регула (α Льва, 1,3°°)
- 9^h Луна ($\Phi = 0.90$) в 0.5° южнее Спики (а **Девы, 1,0**^m) 20-22" Луна (Ф = 0,86) закрывает звезду у Девы (3,8"). Явление видно в Восточной Европе (кроме Заполярья), на Южном Кавказе,
- 7^{h} Луна ($\Phi = 0.95$) в 4° южнее Сатурна


ри и Западном

. Астерои∆ Геба (6 Hebe, 9,6™) в противостоянии, в 1,758 а.е (263 млн. км) от Земли

- 24 16-19^h Луна (Ф = 1,00) закрывает звезду к Весов (4,8^m) для наблюдателей востока европей: ти РФ, Западной, Центральной осточной Сибири, Забайкалья, 20^h Меркурий (-0,9^m) в 1° севернее
 - **21-23^h Лу**на закрывает звезду λ Весов (5,0^m). Явление видно на евере Украины, европейской ча Ф (кроме Заполярья), в Белару
- 4:25 Полнолуние 11^h Луна (Ф = 1,00) в 6° севе 2^h Луна ($\Phi = 0.99$) в перигее (в 358375 км от центра Земли) 6^h Меркурий (-0,7^r Юпитера (-1,9^m) ^п) в **2**° севеј
- Юпитера (-1,9^m) 18^h Венера (-3,9^m) в 1° севернее 28
- 55-20:5/ Астероид Нонгома 57 Nongoma, 14,5°°) закрывает зду ТҮС 6867-00917 (8,6°°). на видимости: Туркмения, запад екистана и Казахстана, восточная ть Саратовской и западная часть

Время всемирное (UT)

ЛЮБИТЕЛЬСКАЯ АСТРОНОМИЯ

40 Вселенная, пространство, время www.universemagazine.com

«Белая пятница» в Киеве

Наш журнал уже неоднократно писал о природных катаклизмах, происходивших в разных уголках планеты Земля. Но одно дело - наблюдать картины буйства стихии в Интернете, и совсем другое - оказаться в ее «сердце», лишний раз получив возможность ощутить, насколько все же мал и слаб человек перед величием Природы.

22-23 марта Центральная и Северная Украина, а также юг Беларуси пережили самый мощный снегопад за всю историю метеорологических наблюдений. 60 миллиметров* - не такая уж и большая на первый взгляд величина, однако это больше мартовской месячной нормы осадков. и к тому же следует помнить, что насыпная плотность снега в 5-10 раз меньше плотности воды, а значит, средняя толщина снежного покрова составила не меньше

полуметра (в реальности в некоторых местах она превышала метр). Несмотря на то, что метеорологи своевременно выдали предупреждение о «большом снеге», коммунальные службы, казалось, не обратили на него внимания. Уже вечером в пятницу в большинстве североукраинских городов перестал работать городской транспорт. а ближе к ночи стало понятно, что тысячи водителей, застрявших в невиданных пробках, там и заночуют...

К счастью, удар стихии не сопровождался человеческими жертвами. По словам вице-премьер-министра Александра Вилкула, общий объем убытков будет озвучен по итогам анализа, который проведут после окончания ликвидации последствий грандиозного снегопада, но уже сейчас ясно, что он приближается к сотне миллионов гривен. Теперь коммунальники готовятся к возможным последствиям таяния огромной массы снега.

Что же стало причиной мартовской снежной катастрофы? Эксперты-климатологи склонны считать, что ее «виновником» в очередной раз стало глобальное изменение климата, более известное под названием «глобальное потепление». Весенние вторжения атлантических циклонов, несущих теплые и влажные атмосферные массы. в воздушное пространство над Восточной Европой, все еще «хранящее» зимний холод, не являются чем-то необычным для синоптиков. Однако в этот раз количество влаги, принесенное с Атлантики, оказалось слишком большим, а восточноевропейский антициклон, обычно сдерживающий такие «прорывы», располагался слишком далеко на севере. И это, по всей видимости, не последний подобный случай: земной климат продолжает меняться буквально на наших глазах, а значит - мы неминуемо станем свидетелями очередных погодных аномалий и экстремальных природных явлений.

^{*} Уровень твердых осадков (снега) определяется осадкомерами и измеряется в миллиметрах слоя воды, образовавшейся после их таяния.

СОБЕРИТЕ ПОЛНУЮ КОЛЛЕКЦИЮ ЖУРНАЛОВ

«Вселенная, пространство, время»

В 105 изданных номерах ежемесячного научно-популярного журнала опубликовано 395 авторских статей и обзоров, 48 научнофантастических рассказов, более 2000 новостей

2013 Г.

2012 Г.

2011 Г.

2010 г.

2009 Г.

2008 г.

2007 Г.

2006 **Г**.

2005 Г.

2004 Г.

2003 г.

KAK BAKABATЬ

УКРАИНА

по телефонам: (063) 073-68-42; (067) 370-60-39

по почте: 02152, Киев,

02152, Киев, Днепровская наб., 1-A, оф. 146

по Интернету: info@universemagazine.com www.universemagazine.com

РОССИЯ

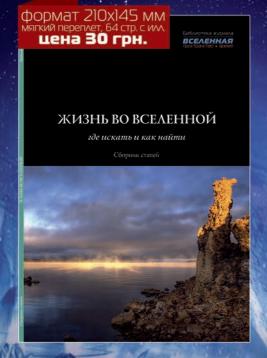
по телефонам: (499) 253-79-98, (495) 544-71-57

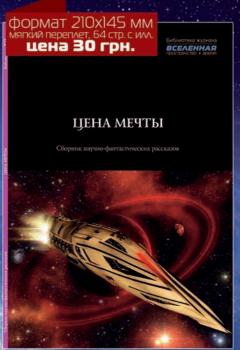
по почте:

123056, Москва, пер. М. Тишинский, д. 14/16

по Интернету:

www.sky-watcher.ru/shop elena@astrofest.ru


ЦЕНЫ*


	в Украине	в России
2003-2004 гг.	2 грн.	30 руб.
2005	4 грн.	30 руб.
2006	5 грн.	40 руб.
2007	5 грн.	50 руб.
2008	6 грн.	60 руб.
2009	8 грн.	70 руб.
2010	8 грн.	70 руб.
c №3 2010	10 грн.	70 pv6.

*Журналы рассылаются без предоплаты наложенным платежом. Оплата производится при получении журналов в почтовом отделении. Общая стоимость заказа будет состоять из суммарной стоимости журналов по указанным ценам и платы за почтовые услуги. Информацию о наличии ретрономеров можно получить в киевской и московской редакциях

НАУЧНО-ПОПУЛЯРНАЯ СЕРИЯ

Библиотека журнала «Вселенная, пространство, время»

жизнь во вселенной

Где искать и как найти

Сборник статей

Сборник статей посвящен теме жизни во Вселенной. Жизнь на нашей планете многообразна в своих проявлениях. Она существует в самых экстремальных условиях. Она весьма «живуча» – все авторы представленных статей не сомневаются что она может существовать в безграничном космосе, на планетах вокруг звезд, на их спутниках, и наверняка – на уровне микромира... Только как ее найти и идентифицировать?

ШЕНА МЕЧТЫ

Сборник рассказов

Научная фантастика продолжает оставаться одним из наиболее популярных литературных жанров. Даже не пытаясь сопротивляться предпочтениям наших читателей, редакционный коллектив «Вселенной...» принял решение собрать под одной обложкой часть рассказов, публиковавшихся в журнале. Надеемся, что это не последний подобный сборник, и читатели будут иметь возможность освежить в памяти наши страницы, а также ознакомиться с произведениями, по тем или иным причинам не опубликованными в журнальном варианте.

КОСМИЧЕСКИЙ ДЕТЕКТИВ

Рассекреченные, малоизвестные и трагические <u>стран</u>ицы истории космонавтики

Сборник статей

Дорога человечества к звездам не состояла из одних успехов. Покорители космоса познали и горечь неудач – правда, о них средства массовой информации упоминали намного реже, некоторые подробности, в свое время укрытые под грифом «совершенно секретно», стали известны широкой публике сравнительно недавно.

ГОТОВЯТСЯ К ИЗДАНИЮ КНИГИ НА СЛЕДУЮЩИЕ ТЕМЫ:

ЧТО МОЖНО УВИДЕТЬ НА НЕБЕ ● ДОСТИЖЕНИЯ КОСМОЛОГИИ ЗА ПОСЛЕДНИЕ 100 ЛЕТ ● «ТЕМНАЯ МАТЕРИЯ» И «ТЕМНАЯ ЭНЕРГИЯ» ● ИСТОРИЯ ОСВОЕНИЯ КОСМОСА ● ЗАГАДКИ ВОЗНИКНОВЕНИЯ, ПРОЦВЕТАНИЯ И ГИБЕЛИ ДРЕВНИХ НАРОДОВ И ЦИВИЛИЗАЦИЙ ● СБОРНИК НАУЧНО-ФАНТАСТИЧЕСКИХ РАССКАЗОВ

СОБЕРИТЕ ПОЛНУЮ КОЛЛЕКЦИЮ СОБСТВЕННОЙ БИБЛИОТЕКИ «ВСЕЛЕННАЯ, ПРОСТРАНСТВО, ВРЕМЯ»

KAK BAKABATЬ

УКРАИНА

по телефонам: (063) 073-68-42; (067) 370-60-39

по почте:

02152, Киев, Днепровская наб., 1-A, оф. 146

по Интернету:

info@universemagazine.com www.universemagazine.com

РОССИЯ

по телефонам: (499) 253-79-98, (495) 544-71-57

по почте:

123056, Москва, пер. М. Тишинский, д. 14/16

по Интернету:

www.sky-watcher.ru/shop elena@astrofest.ru